We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Production Method for Medical-Grade Radioisotopes

By MedImaging International staff writers
Posted on 24 Jun 2019
Print article
A novel technique enables simultaneous production of molybdenum-99 (Mo-99) and other isotopes without the need for highly enriched, weapons-grade uranium.

Developed by BGN Technologies (Beer Sheva; Israel), the technique uses the naturally occurring and stable molybdenum-100 (Mo-100) isotope and a linear electron accelerator to generate Mo-99 and technetium-99m (Tc-99m). The molybdenum target acts both as a bremsstrahlung converter for the incident electron beam, and simultaneously as a Mo-99 producing target via the 100Mo(γ,n)99Mo reaction on bremsstrahlung photons. Even higher rates of molybdenum yield could be achieved by optimizing the target geometry.

The same process can also be used to simultaneously generate other short-lived radioisotopes such as 18F, 15O, 13N and 11C, which can be used as byproducts for use in positron emission tomography (PET) scans. The technology was co-developed by Alexander Tsechanski, PhD, from the department of nuclear engineering at Ben-Gurion University (BGU; Beer Sheva, Israel), and D. V. Fedorchenko, PhD, from the National Science Center Kharkov Institute of Physics and Technology (Ukraine).

“Technetium-99m is a metastable nuclear isomer of technetium-99 that is used in tens of millions of medical diagnostic procedures annually, making it the most commonly used medical radioisotope. The need for uranium and a nuclear reactor to produce this radioisotope is creating a shortage of this important substance,” said Zafrir Levy, senior vice president for business development, exact sciences, and engineering at BGN Technologies. “Tsechanski’s innovation offers a more feasible, cost-effective method, using cheaper electron accelerators for generating Mo99/Tc-99m. We are currently looking for partners for further developing and commercializing this important invention.”

The most important medical isotope, Tc-99m, is obtained from the decay of its parent Mo-99, and is used in more than 80% of all nuclear medicine procedures. Mo-99 is packed into source containment vessels and distributed to hospitals, where nuclear medicine specialists can draw off the Tc-99m as needed for about a week. Because of its unstable nature, Mo-99 does not occur naturally and is traditionally produced using nuclear research reactors powered by enriched uranium in Canada, the Netherlands, Belgium, France, Australia, and South Africa.

Related Links:
BGN Technologies
Ben-Gurion University
National Science Center Kharkov Institute of Physics and Technology

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Under Table Shield
3 Section Double Pivot Under Table Shield
Oncology Information System
RayCare
Silver Member
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers

Print article
Radcal

Channels

MRI

view channel
Image: Exablate Prime features an enhanced user interface and enhancements to optimize productivity (Photo courtesy of Insightec)

Next Generation MR-Guided Focused Ultrasound Ushers In Future of Incisionless Neurosurgery

Essential tremor, often called familial, idiopathic, or benign tremor, leads to uncontrollable shaking that significantly affects a person’s life. When traditional medications do not alleviate symptoms,... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.