We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Machine Learning Helps Improve Mammography Workflow Efficiency

By MedImaging International staff writers
Posted on 22 Jun 2019
Image: New research shows machine learning can reduce the number of mammograms a radiologist needs to read (Photo courtesy of HealthManagement.org).
Image: New research shows machine learning can reduce the number of mammograms a radiologist needs to read (Photo courtesy of HealthManagement.org).
A team of researchers from the University of California Los Angeles (California, LA, USA) has demonstrated that machine learning can reduce the number of mammograms a radiologist needs to read by using a machine learning classifier to correctly identify normal mammograms and select the uncertain and abnormal examinations for radiological interpretation.

The researchers created an autonomous radiologist assistant (AURA), which was a modified version of a previous clinical decision support system, The aim was to determine if AURA could diagnose mammograms as negative while maintaining diagnostic accuracy and noting which scans would a radiologist would still require to read.

For the study, a research data set from over 7,000 women who were recalled for assessment at six UK National Health Service Breast Screening Program centers was used. The researchers used a convolutional neural network in conjunction with multi-task learning to extract imaging features from mammograms that mimic the radiological assessment provided by a radiologist, the patient’s non-imaging features, and pathology outcomes. The researchers then used a deep neural network to concatenate and fuse multiple mammogram views to predict both a diagnosis and a recommendation of whether or not additional radiological assessment was needed.

The study used a ten-fold cross-validation on 2,000 randomly selected patients from the data set, while using the remainder of the data set for convolutional neural network training. AURA maintained an acceptable negative predictive value of 0.99 while identifying 34% (95% confidence interval, 25%-43%) and 91% (95% confidence interval: 88%-94%) of the negative mammograms for test sets with a cancer prevalence of 15% and 1%, respectively.

The researchers concluded that machine learning can be leveraged to successfully reduce the number of normal mammograms that radiologists need to read without degrading diagnostic accuracy.

Related Links:
University of California Los Angeles

X-ray Diagnostic System
FDX Visionary-A
Ultrasound Table
Women’s Ultrasound EA Table
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Post-Processing Imaging System
DynaCAD Prostate

Channels

Nuclear Medicine

view channel
Image: The new tracer, 64Cu-NOTA-EV-F(ab′)2​, targets nectin-4, a protein strongly linked to tumor growth in both TNBC and UBC cancer types. (Wenpeng Huang et al., DOI: 10.2967/jnumed.125.270132)

PET Tracer Enables Same-Day Imaging of Triple-Negative Breast and Urothelial Cancers

Triple-negative breast cancer (TNBC) and urothelial bladder carcinoma (UBC) are aggressive cancers often diagnosed at advanced stages, leaving limited time for effective treatment decisions.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.