Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Machine Learning Helps Improve Mammography Workflow Efficiency

By MedImaging International staff writers
Posted on 22 Jun 2019
A team of researchers from the University of California Los Angeles (California, LA, USA) has demonstrated that machine learning can reduce the number of mammograms a radiologist needs to read by using a machine learning classifier to correctly identify normal mammograms and select the uncertain and abnormal examinations for radiological interpretation.

The researchers created an autonomous radiologist assistant (AURA), which was a modified version of a previous clinical decision support system, The aim was to determine if AURA could diagnose mammograms as negative while maintaining diagnostic accuracy and noting which scans would a radiologist would still require to read.

For the study, a research data set from over 7,000 women who were recalled for assessment at six UK National Health Service Breast Screening Program centers was used. More...
The researchers used a convolutional neural network in conjunction with multi-task learning to extract imaging features from mammograms that mimic the radiological assessment provided by a radiologist, the patient’s non-imaging features, and pathology outcomes. The researchers then used a deep neural network to concatenate and fuse multiple mammogram views to predict both a diagnosis and a recommendation of whether or not additional radiological assessment was needed.

The study used a ten-fold cross-validation on 2,000 randomly selected patients from the data set, while using the remainder of the data set for convolutional neural network training. AURA maintained an acceptable negative predictive value of 0.99 while identifying 34% (95% confidence interval, 25%-43%) and 91% (95% confidence interval: 88%-94%) of the negative mammograms for test sets with a cancer prevalence of 15% and 1%, respectively.

The researchers concluded that machine learning can be leveraged to successfully reduce the number of normal mammograms that radiologists need to read without degrading diagnostic accuracy.

Related Links:
University of California Los Angeles


40/80-Slice CT System
uCT 528
Ultrasound Needle Guidance System
SonoSite L25
X-ray Diagnostic System
FDX Visionary-A
Half Apron
Demi
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Nuclear Medicine

view channel
Image: Perovskite crystal boules are grown in carefully controlled conditions from the melt (Photo courtesy of Mercouri Kanatzidis/Northwestern University)

New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis

Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more

General/Advanced Imaging

view channel
Image: The Angio-CT solution integrates the latest advances in interventional imaging (Photo courtesy of Canon Medical)

Cutting-Edge Angio-CT Solution Offers New Therapeutic Possibilities

Maintaining accuracy and safety in interventional radiology is a constant challenge, especially as complex procedures require both high precision and efficiency. Traditional setups often involve multiple... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.