We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
IBA-Radcal

Download Mobile App




Machine Learning Helps Improve Mammography Workflow Efficiency

By MedImaging International staff writers
Posted on 22 Jun 2019
Image: New research shows machine learning can reduce the number of mammograms a radiologist needs to read (Photo courtesy of HealthManagement.org).
Image: New research shows machine learning can reduce the number of mammograms a radiologist needs to read (Photo courtesy of HealthManagement.org).
A team of researchers from the University of California Los Angeles (California, LA, USA) has demonstrated that machine learning can reduce the number of mammograms a radiologist needs to read by using a machine learning classifier to correctly identify normal mammograms and select the uncertain and abnormal examinations for radiological interpretation.

The researchers created an autonomous radiologist assistant (AURA), which was a modified version of a previous clinical decision support system, The aim was to determine if AURA could diagnose mammograms as negative while maintaining diagnostic accuracy and noting which scans would a radiologist would still require to read.

For the study, a research data set from over 7,000 women who were recalled for assessment at six UK National Health Service Breast Screening Program centers was used. The researchers used a convolutional neural network in conjunction with multi-task learning to extract imaging features from mammograms that mimic the radiological assessment provided by a radiologist, the patient’s non-imaging features, and pathology outcomes. The researchers then used a deep neural network to concatenate and fuse multiple mammogram views to predict both a diagnosis and a recommendation of whether or not additional radiological assessment was needed.

The study used a ten-fold cross-validation on 2,000 randomly selected patients from the data set, while using the remainder of the data set for convolutional neural network training. AURA maintained an acceptable negative predictive value of 0.99 while identifying 34% (95% confidence interval, 25%-43%) and 91% (95% confidence interval: 88%-94%) of the negative mammograms for test sets with a cancer prevalence of 15% and 1%, respectively.

The researchers concluded that machine learning can be leveraged to successfully reduce the number of normal mammograms that radiologists need to read without degrading diagnostic accuracy.

Related Links:
University of California Los Angeles

Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Digital X-Ray Detector Panel
Acuity G4
Digital Radiographic System
OMNERA 300M
Medical Radiographic X-Ray Machine
TR30N HF

Channels

Nuclear Medicine

view channel
Image: This artistic representation illustrates how the drug candidate NECT-224 works in the human body (Photo courtesy of HZDR/A. Gruetzner)

Radiopharmaceutical Molecule Marker to Improve Choice of Bladder Cancer Therapies

Targeted cancer therapies only work when tumor cells express the specific molecular structures they are designed to attack. In urothelial carcinoma, a common form of bladder cancer, the cell surface protein... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.