Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




CT Radiation Dose Levels Vary Across Countries

By MedImaging International staff writers
Posted on 14 Jan 2019
A new international study shows a wide variation in the radiation dose levels used for computerized tomography (CT) scans, exposing patients to unnecessary radiation.

Researchers at the University of California, San Francisco (UCSF; USA), St. More...
Luke’s International Hospital (Tokyo, Japan), Maastricht University Medical Center (MUMC; The Netherlands), and other institutions conducted an observational, prospective cohort study of over two million adults CT scans performed between November 2015 and August 2017 at 151 institutions across seven countries (Switzerland, Netherlands, Germany, United Kingdom, United States, Israel, and Japan).

The main outcome measures were mean effective doses and proportions of high dose examinations for abdomen, chest, combined chest and abdomen, and head CT, as determined by patient characteristics (sex, age, and size), type of institution (trauma center, care provision 24/7 centers, and academic or private locales), institutional practice volume, machine factors (manufacturer and model), country, and how scanners were used--before and after adjustment for patient characteristics--using hierarchical linear and logistic regression.

The results revealed that mean effective dose and the proportion of high dose examinations varied substantially across institutions. Even after adjusting for patient characteristics, wide variations in radiation doses across countries persisted, with a fourfold range in mean effective dose for abdomen CT examinations and a 17-fold range in proportion of high dose examinations. Similar variations were observed for chest and combined chest and abdomen CT, but doses for head CT varied less. In contrast, doses varied modestly by type of institution and machine characteristics. The study was published on January 2, 2018, in BMJ.

“We were surprised to learn that the type of machine mattered so little; it is how the machines are used that matters, telling us that there is tremendous opportunity to lower doses, without acquiring the newest machine make and model,” said lead author Professor Rebecca Smith-Bindman, MD, of UCSF. “Our analysis of assessing the variation in dose for specific clinical indications and limited to patients scanned in a single type of machine was the most surprising and highlights this finding.”

“The variation between patients was extremely high…but dose levels could be reduced virtually overnight if there was the will to do so. There is a safety imperative to standardize the protocols used for CT,” concluded Professor Smith. “Developing optimized protocols that balance image quality and dose and of standardizing and updating protocols needs to be simplified, and manufacturers need to get involved in this role. Currently, optimized protocols are not freely shared, and there is a huge role that manufacturers can play in advancing this.”

Various approaches have been used to optimize CT radiation doses. For example, doses for individual patients can be minimized by refining the scan coverage, altering technical parameters, or by software techniques such as iterative reconstruction. One widely used approach to standardize radiation doses is the creation of target dose levels or diagnostic reference levels.

Related Links:
University of California, San Francisco
St. Luke’s International Hospital
Maastricht University Medical Center


Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Half Apron
Demi
Portable X-ray Unit
AJEX140H
Medical Radiographic X-Ray Machine
TR30N HF
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Nuclear Medicine

view channel
Image: LHSCRI scientist Dr. Glenn Bauman stands in front of the PET scanner (Photo courtesy of LHSCRI)

New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer

Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.