We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




CT Radiation Dose Levels Vary Across Countries

By MedImaging International staff writers
Posted on 14 Jan 2019
Print article
A new international study shows a wide variation in the radiation dose levels used for computerized tomography (CT) scans, exposing patients to unnecessary radiation.

Researchers at the University of California, San Francisco (UCSF; USA), St. Luke’s International Hospital (Tokyo, Japan), Maastricht University Medical Center (MUMC; The Netherlands), and other institutions conducted an observational, prospective cohort study of over two million adults CT scans performed between November 2015 and August 2017 at 151 institutions across seven countries (Switzerland, Netherlands, Germany, United Kingdom, United States, Israel, and Japan).

The main outcome measures were mean effective doses and proportions of high dose examinations for abdomen, chest, combined chest and abdomen, and head CT, as determined by patient characteristics (sex, age, and size), type of institution (trauma center, care provision 24/7 centers, and academic or private locales), institutional practice volume, machine factors (manufacturer and model), country, and how scanners were used--before and after adjustment for patient characteristics--using hierarchical linear and logistic regression.

The results revealed that mean effective dose and the proportion of high dose examinations varied substantially across institutions. Even after adjusting for patient characteristics, wide variations in radiation doses across countries persisted, with a fourfold range in mean effective dose for abdomen CT examinations and a 17-fold range in proportion of high dose examinations. Similar variations were observed for chest and combined chest and abdomen CT, but doses for head CT varied less. In contrast, doses varied modestly by type of institution and machine characteristics. The study was published on January 2, 2018, in BMJ.

“We were surprised to learn that the type of machine mattered so little; it is how the machines are used that matters, telling us that there is tremendous opportunity to lower doses, without acquiring the newest machine make and model,” said lead author Professor Rebecca Smith-Bindman, MD, of UCSF. “Our analysis of assessing the variation in dose for specific clinical indications and limited to patients scanned in a single type of machine was the most surprising and highlights this finding.”

“The variation between patients was extremely high…but dose levels could be reduced virtually overnight if there was the will to do so. There is a safety imperative to standardize the protocols used for CT,” concluded Professor Smith. “Developing optimized protocols that balance image quality and dose and of standardizing and updating protocols needs to be simplified, and manufacturers need to get involved in this role. Currently, optimized protocols are not freely shared, and there is a huge role that manufacturers can play in advancing this.”

Various approaches have been used to optimize CT radiation doses. For example, doses for individual patients can be minimized by refining the scan coverage, altering technical parameters, or by software techniques such as iterative reconstruction. One widely used approach to standardize radiation doses is the creation of target dose levels or diagnostic reference levels.

Related Links:
University of California, San Francisco
St. Luke’s International Hospital
Maastricht University Medical Center

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Computed Tomography (CT) Scanner
Aquilion Serve SP
Radiology Software
MSK Radiology
New
Silver Member
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers

Print article

Channels

Ultrasound

view channel
Image: Structure of the proposed transparent ultrasound transducer and its optical transmittance (Photo courtesy of POSTECH)

Ultrasensitive Broadband Transparent Ultrasound Transducer Enhances Medical Diagnosis

The ultrasound-photoacoustic dual-modal imaging system combines molecular imaging contrast with ultrasound imaging. It can display molecular and structural details inside the body in real time without... Read more

Nuclear Medicine

view channel
Image: PET/CT of a 60-year-old male patient with clinical suspicion of lung cancer (Photo courtesy of EJNMMI Physics)

Early 30-Minute Dynamic FDG-PET Acquisition Could Halve Lung Scan Times

F-18 FDG-PET scans are a way to look inside the body using a special dye, and these scans can be either static or dynamic. Static scans happen 60 minutes after the dye is administered into the body, showing... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The acquisition will expand IBA’s medical imaging quality assurance offering (Photo courtesy of Radcal)

IBA Acquires Radcal to Expand Medical Imaging Quality Assurance Offering

Ion Beam Applications S.A. (IBA, Louvain-La-Neuve, Belgium), the global leader in particle accelerator technology and a world-leading provider of dosimetry and quality assurance (QA) solutions, has entered... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.