We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Algorithm Identifies Abnormal Chest X-Rays

By MedImaging International staff writers
Posted on 01 Oct 2018
Print article
Image: AI algorithms match radiologists in detecting pathologies on chest X-rays and CT (Photo courtesy of Qure.ai).
Image: AI algorithms match radiologists in detecting pathologies on chest X-rays and CT (Photo courtesy of Qure.ai).
A clinical validation study confirms that an artificial intelligence (AI) driven algorithm can differentiate between normal and abnormal x-rays with unprecedented accuracy.

Researchers at Columbia Asia Hospitals (Kuala Lumpur, Malaysia) and Qure.ai (San Mateo, CA, USA) trained a deep learning system to identify abnormal x-rays using 1.2 million x-rays and their corresponding radiology reports. Specific x-ray abnormalities included blunted costophrenic angle, calcification, cardiomegaly, cavity, consolidation, fibrosis, hilar enlargement, opacity and pleural effusion, among others. The system was tested against a three-radiologist majority analysis based on an independent, retrospectively collected, and de-identified set of 2,000 x-rays.

The results showed that the deep learning AI system was highly accurate in detecting 15 abnormalities on chest x-rays at near-radiologist identification levels, with more than 90% accuracy. The chest clinical validation study joins a previous clinical study that confirmed the Qure.ai qER deep learning algorithm can identify bleeds, fractures, and other critical trauma in head computerized tomography (CT) scans, with more than 95% accuracy. The chest study was published on July 18, 2018, in arXiv.org.

“The chest x-ray is a valuable health screening tool and a vital component of public health programs worldwide. The enormous volume produced each year creates an ever-increasing demand for radiologists,” said study co-author Shalini Govil, MD, of the Columbia Asia Hospitals radiology group. “Unfortunately, numerous chest x-rays displaying significant pathology are left neglected in piles of backlogs due to a lack of available radiologists to report them. Through semi-automation of the reporting process, AI can significantly reduce a radiologist's workload, improve report accuracy, reduce turnaround time, and save lives.”

“This is the largest training dataset ever for a chest x-ray AI. It's also the largest validation study to date, measured against 2,000 x-rays, each read by three radiologists,” said senior author Prashant Warier, CEO and co-founder of Qure.ai. “This is an exciting time for deep learning technologies in medicine. As these systems increase in accuracy, so will the viability of using deep learning to extend the reach of chest x-ray interpretation, improve reporting efficiency, and save lives.”

Deep learning is part of a broader family of AI machine learning methods based on data representations, as opposed to task specific algorithms. It involves neural network algorithms that use a cascade of many layers of nonlinear processing units for feature extraction and transformation, with each successive layer using the output from the previous layer as input, forming a hierarchical representation.

Related Links:
Columbia Asia Hospitals
Qure.ai

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Under Table Shield
3 Section Double Pivot Under Table Shield
Digital Radiography Acquisition Software
VXvue with PureImpact
New
Ultrasound Software
UltraExtend NX

Print article

Channels

Ultrasound

view channel
Image: Structure of the proposed transparent ultrasound transducer and its optical transmittance (Photo courtesy of POSTECH)

Ultrasensitive Broadband Transparent Ultrasound Transducer Enhances Medical Diagnosis

The ultrasound-photoacoustic dual-modal imaging system combines molecular imaging contrast with ultrasound imaging. It can display molecular and structural details inside the body in real time without... Read more

Nuclear Medicine

view channel
Image: PET/CT of a 60-year-old male patient with clinical suspicion of lung cancer (Photo courtesy of EJNMMI Physics)

Early 30-Minute Dynamic FDG-PET Acquisition Could Halve Lung Scan Times

F-18 FDG-PET scans are a way to look inside the body using a special dye, and these scans can be either static or dynamic. Static scans happen 60 minutes after the dye is administered into the body, showing... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The acquisition will expand IBA’s medical imaging quality assurance offering (Photo courtesy of Radcal)

IBA Acquires Radcal to Expand Medical Imaging Quality Assurance Offering

Ion Beam Applications S.A. (IBA, Louvain-La-Neuve, Belgium), the global leader in particle accelerator technology and a world-leading provider of dosimetry and quality assurance (QA) solutions, has entered... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.