Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Disposable Yeast Badges Detect Radiation Exposure Instantly

By MedImaging International staff writers
Posted on 20 Aug 2018
A biohybrid radiation-sensing platform based on yeast (Saccharomyces cerevisiae) cells can detect radiation damage by quantifying the metabolic activity of the microorganism population.

Developed at Purdue University (Lafayette, IN, USA), the wearable, disposable sensor is a film‐type device fabricated on a paper substrate with yeast cells patterned between two electrodes. More...
The yeast population is sensitive to radiation when dry, and is read by activating it with a drop of water. When the yeast cells are exposed to ionizing radiation and subsequently allowed to ferment a glucose solution, they exhibit an electrical conductivity lower than that of non-exposed yeast, and proportional to the measured impedance of the fermenting medium.

The higher the radiation dose, the higher the percentage of yeast cells that die. Wetting the badge with water activates the cells that are still alive to consume glucose and release carbon dioxide (CO2), the same fermentation process responsible for brewing beer and making bread rise. When CO2 bubbles at the surface of the medium, ions also form, which increase the electrical conductivity of S. cerevisiae cells, which can be measured by hooking up the badge to a readout system.

In a study of the prototype device, an 18 × 18 mm2, 0.57 mm thick sensor with ground yeast filtered via a 50 µm mesh demonstrated sensitivity when exposed to radiocaesium (Cs‐137), with a minimum detectable dose of one milliard, comparable to that of current commercial badges. Examination of the yeast cultures under fluorescence microscopy suggested that the sensitivity was primarily due to damaged membranes in the cell wall and the mitochondria. The study was published on August 8, 2018, in Advanced Biosystems.

“Currently, radiology workers are required to wear badges, called dosimeters, on various parts of their bodies for monitoring their radiation exposure,” said senior author professor of electrical and computer engineering Babak Ziaie, PhD. “They wear the badges for a month or two, and then they send them to the company that made them. But it takes weeks for the company to read the data and send a report back to the hospital. Ours give an instant reading at much lower cost.”

Wearable radiation sensors (dosimeters) for workers in radiation‐intensive industries provide a measure of radiation exposure, but not of its effects on biological tissue.

Related Links:
Purdue University


Post-Processing Imaging System
DynaCAD Prostate
Digital Color Doppler Ultrasound System
MS22Plus
Ultrasonic Pocket Doppler
SD1
Computed Tomography System
Aquilion ONE / INSIGHT Edition
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Nuclear Medicine

view channel
Image: LHSCRI scientist Dr. Glenn Bauman stands in front of the PET scanner (Photo courtesy of LHSCRI)

New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer

Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.