We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Novel X-ray Imaging Offers Enhanced Resolution

By MedImaging International staff writers
Posted on 01 Sep 2017
Print article
Image: Incoherent diffraction pattern (L), and after IDI intensity correlation (R) (Photo courtesy of Kartik Ayyer / DESY).
Image: Incoherent diffraction pattern (L), and after IDI intensity correlation (R) (Photo courtesy of Kartik Ayyer / DESY).
A new study proposes that incoherent diffractive imaging (IDI) could significantly improve the quality of X-ray images in comparison to conventional methods.

Developed by researchers at Friedrich Alexander University (FAU; Erlangen-Nuremberg, Germany), Deutsches Elektronen-Synchrotron (DESY; Hamburg, Germany) and the University of Hamburg (Germany), IDI measures intensity correlations of incoherently scattered x-ray radiation in order to image the full three dimensional (3D) arrangement of the scattering atoms. The incoherently scattered X-ray photons are in time-resolved “snapshots” with durations of no more than a few femtoseconds, a few quadrillionths of a second.

When analyzing the extremely short X-ray snapshots, information on the arrangement of the atoms can be obtained, but such short time spans have only been possible so far by using free-electron lasers. By taking advantage of DID with such lasers, significantly higher resolutions than those available with conventional coherent diffraction imaging and crystallography are possible, including supplementary 3D information in the Fourier space during single sample orientation.

The new method uses fluorescence light, which provides a much stronger signal that is also scattered to significantly larger angles, allowing more detailed spatial information. In addition, filters can be used to measure the light of specific atomic species, making it possible to determine the position of individual atoms in molecules and proteins, with a significantly higher resolution compared to coherent imaging using X-ray light of the same wavelength. The study was published on July 31, 2017, in Physical Review Letters.

“With X-ray light, in most cases incoherent scattering dominates, for example in the form of fluorescence resulting from photon absorption and subsequent emission,” said lead author Anton Classen, PhD, of the FAU Quantum Optics and Quantum Information group. “This creates a diffuse background that cannot be used for coherent imaging, and reduces the reproduction fidelity of coherent methods.”

An analogy of coherently scattered light waves would be water waves generated by obstacles in a slowly flowing stream, which generate a characteristic diffraction pattern formed by the underlying structure that can be derived by determining the phase relationship between incident and reflected photons. Under the water analogy, this corresponds to water waves that are deflected from the obstacles without vortexes or turbulences. But if photon scattering is incoherent, the fixed phase relationship makes it impossible to determine the arrangement of the atoms, as in turbulent waters.

Related Links:
Friedrich Alexander University
Deutsches Elektronen-Synchrotron
University of Hamburg
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Ultrasound Needle Guide
Ultra-Pro II
New
Pre-Op Planning Solution
Sectra 3D Trauma
Ultrasound Doppler System
Doppler BT-200

Print article
Radcal

Channels

MRI

view channel
Image: PET/MRI can accurately classify prostate cancer patients (Photo courtesy of 123RF)

PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients

The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.