We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




3D Data Used to Visualize Cardiac Conductive System

By MedImaging International staff writers
Posted on 14 Aug 2017
Image: A plastic 3D printed heart highlights the human cardiac conductive system (Photo courtesy of the University of Manchester).
Image: A plastic 3D printed heart highlights the human cardiac conductive system (Photo courtesy of the University of Manchester).
Researchers have discovered new details of how the conductive system of the human heart functions that could help cardiac surgeons repair hearts without damaging healthy tissue.

The results of this pioneering study provide improved and more accurate computer models of the conductive system of the human heart, and the origins of the heartbeat, and could help improve clinicians’ understanding of atrial fibrillation and other common cardiac problems.

The scientists from Liverpool John Moores University (LJMU; Liverpool, UK), The University of Manchester (Manchester, UK), Aarhus University (Aarhus, Denmark), and Newcastle University (Newcastle, UK) published the research findings online in the August 3, 2017, issue of the journal Nature, Scientific Reports.

The scientists soaked post-mortem samples of heart tissue in an iodine solution to enhance visualization of heart tissue in X-Ray images. They then used X-Ray scanners to make 3D images, some of which were so detailed that they showed the boundaries between individual heart cells, and the cellular layout in the tissue.

Professor Jonathan Jarvis, at the LJMU School of Sport and Exercise Sciences, said, "The 3D data makes it much easier to understand the complex relationships between the cardiac conduction system and the rest of the heart. We also use the data to make 3D printed models that are really useful in our discussions with heart doctors, other researchers and patients with heart problems. New strategies to repair or replace the aortic valve must therefore make sure that they do not damage or compress this precious tissue. In future work we will be able to see where the cardiac conduction system runs in hearts that have not formed properly. This will help the surgeons who repair such hearts to design operations that have the least risk of damaging the cardiac conduction system."

Related Links:
Liverpool John Moores University
University of Manchester
Aarhus University
Newcastle University
New
Mammography System (Analog)
MAM VENUS
Portable Color Doppler Ultrasound Scanner
DCU10
New
Post-Processing Imaging System
DynaCAD Prostate
Radiology Software
DxWorks

Channels

Ultrasound

view channel
Image: The new implantable device for chronic pain management is small and flexible (Photo courtesy of The Zhou Lab at USC)

Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery

Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.