Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Cross-Sectional CT Imaging Could Predict Patient Longevity

By MedImaging International staff writers
Posted on 14 Jun 2017
A new study suggests that analysis of computerized tomography (CT) images of internal organs could predict 5-year mortality with almost 70% accuracy.

Researchers at the University of Adelaide (UA; Australia) and other institutions conducted proof-of-concept experiments to demonstrate how routinely acquired cross-sectional CT imaging may be used to predict patient longevity as a proxy for overall individual health and disease status, using computer image analysis techniques. More...
To do so, they first gathered 15,957 CT images of seven different tissues from patients aged 60 and older; using logistic regression, they identified a number of image features that were linked to 5-year mortality.

Based on the human-defined image features, they then used machine learning and a range of radiomic classifier models that included convolutional neural network random forests, support vector machines, and boosted tree algorithms in order to teach a computer to make 5-year mortality predictions. They found that as expected, the random forest model performed the best on the human-defined feature classifiers. An analysis showed the results were comparable to clinical methods for longevity prediction. The study was published on May 10, 2017, in Nature Scientific Reports.

“Recent advances in the field of medical image analysis have shown that machine-detectable image features can approximate the descriptive power of biopsy, microscopy, and even DNA analysis for a number of pathologies,” concluded lead author Luke Oakden-Rayner, PhD, of the UA School of Public Health, and colleagues. “Instead of focusing on diagnosing diseases, the automated systems can predict medical outcomes in a way that doctors are not trained to do, by incorporating large volumes of data and detecting subtle patterns.”

Deep learning, a computer learning method which automatically discovers visual features that are suited to a specific task through a process of optimization, has rapidly overtaken more traditional methods in many computer vision tasks, such as image recognition and segmentation, and have approached or even surpassed human level capabilities for complex “real-world” tasks such as image recognition, speech recognition, natural language processing, complex game playing, and more.

Related Links:
University of Adelaide


Digital Radiographic System
OMNERA 300M
Mobile X-Ray System
K4W
Mammo DR Retrofit Solution
DR Retrofit Mammography
Digital X-Ray Detector Panel
Acuity G4
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Nuclear Medicine

view channel
Image: LHSCRI scientist Dr. Glenn Bauman stands in front of the PET scanner (Photo courtesy of LHSCRI)

New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer

Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.