We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Fear Over Low-Dose Imaging Radiation is Overstated

By MedImaging International staff writers
Posted on 02 Feb 2017
Image: New research shows diagnostic imaging radiation may not promote cancer (Photo courtesy of ITN).
Image: New research shows diagnostic imaging radiation may not promote cancer (Photo courtesy of ITN).
The long-held belief that even low doses of radiation, such as those received in diagnostic imaging, increase cancer risk is based on an inaccurate, 70-year-old hypothesis, according to a new study.

Researchers at Nuclear Physics Enterprises (Marlton, NJ, USA) and the U.S. Food and Drug Administration argue that the claim that radiologic imaging carries an iatrogenic risk of cancer is based on an uninformed commitment to the 70-year-old linear no-threshold hypothesis (LNTH). The argument asserts that LNTH and its offspring, the low as reasonably achievable (ALARA) theory, are fatally flawed, focusing only on molecular damage while ignoring protective, organismal biologic responses.

The researchers show that credible evidence of imaging-related low-dose (i.e., lower than 100 mGy) carcinogenic risk is nonexistent, and it is a hypothetical risk derived from the demonstrably false LNTH. On the contrary, they claim, low doses of radiation stimulate protective responses, providing enhanced protection against additional damage over time, including damage from subsequent, higher radiation exposures. In essence, low-dose radiation does not cause, but more likely helps prevent cancer. The study was published in the January 2017 issue of The Journal of Nuclear Medicine.

“We have shown that the claim made by Hermann Muller during his 1946 Nobel Lecture that all radiation is harmful, regardless of how low the dose and dose rate was a non-sequitur unrecognized by the radiation science community,” said lead author Jeffry Siegel, PhD, president and CEO of Nuclear Physics Enterprises. “It has repeatedly been shown that the dose-response relationship may reasonably be considered to be linear but only down to a threshold, below which there is no demonstrable harm and even often benefit. Yet, the LNTH still rules radiation regulatory policy.”

“The task before us is to undo the public’s groundless fears of low-dose radiation exposure. The medical profession must be properly re-educated, beginning with diagnostic radiologists and nuclear medicine physicians, and only then can the public be given valid information that they can trust,” concluded Dr. Siegel. “Furthermore, defeating the LNTH and its offspring ALARA may lead to new ways of diagnosing and treating illness, and, even more importantly, preventing it.”

Data from the atomic-bomb survivor life span study (LSS) show the LNTH-predicted, low-dose carcinogenicity is invalid below approximately 200 mGy. The effective dose of a typical computed tomography (CT) scan is about 10 mSv; a positron emission tomography (PET) brain scan, 5-7 mSv; and a routine whole-body F-18 FDG PET/CT scan, 12-15 mSv. The researchers therefore feel confident that medical imaging's much lower doses for children or adults should not be feared or avoided for radio-phobic reasons.

40/80-Slice CT System
uCT 528
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Ultrasonic Pocket Doppler
SD1
Multi-Use Ultrasound Table
Clinton

Channels

Nuclear Medicine

view channel
Image: LHSCRI scientist Dr. Glenn Bauman stands in front of the PET scanner (Photo courtesy of LHSCRI)

New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer

Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.