We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Pioneering Technique for Imaging Biological Tissues Developed

By MedImaging International staff writers
Posted on 25 Aug 2015
Image: 3-D image of a fly using a new X-ray Imaging Technique (Photo courtesy of Nature Communications, and LMU).
Image: 3-D image of a fly using a new X-ray Imaging Technique (Photo courtesy of Nature Communications, and LMU).
Researchers have developed a novel X-ray imaging system that uses a compact X-ray source generated by ultra-short, high-power laser pulses, combined with phase-contrast X-ray tomography, to provide detailed 3-D imaging of tissues within organisms.

The new imaging system can be used to visualize very small structures, one-hundredth the diameter of a human hair, in 3-D, and can create images soft tissues. The technique uses phase-contrast X-ray refraction, unlike current radiographic techniques which are based on the absorption of X-rays. The physicists demonstrated the technique by producing an extremely detailed 3-D view of the cuticular structures of an insect.

The 3-D views were compiled by combining approximately 1,500 individual images, taken from different angles and assembling them into a 3-D data set.

The new technique could be used in the future to distinguish the difference between less-dense healthy tissue, and denser cancerous tissue, and could be used to detect early-stage tumors, less than 1 mm in diameter, before the can spread. The use of ultra-short X-ray pulses should also enable researchers to use the technique to freeze ultra-fast femtosecond processes, for example in molecules.

The new imaging system was developed by physicists at the Ludwig-Maximilians Universitat Munchen (LMU; Munich, Germany), the Max Planck Institute of Quantum Optics (MPQ; Garching bei Munchen, Germany), and the Technische Universität München (TUM; Munchen, Germany).

Related Links:

LMU
MPQ
TUM


Digital Radiographic System
OMNERA 300M
X-Ray Illuminator
X-Ray Viewbox Illuminators
Ultrasound Imaging System
P12 Elite
Radiology Software
DxWorks

Channels

Ultrasound

view channel
Image: The new implantable device for chronic pain management is small and flexible (Photo courtesy of The Zhou Lab at USC)

Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery

Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.