We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Reprogramming Stem Cells May Suppress Cancer after Radiotherapy

By MedImaging International staff writers
Posted on 27 Jan 2015
The body has developed strategies of purging defective stem cells. A new study has revealed that one of these ways is a “program” that makes stem cells damaged by radiation differentiate into other cells that can no longer survive forever.

Radiation makes a stem cell lose its “stemness,” which makes sense because damaged stem cells do not need to hang around to pump out damaged cells. Moreover, the research, conducted by University of Colorado (CU) Cancer Center (Aurora, USA) scientists, and published online December 27, 2014, in the journal Stem Cells, demonstrated that this same protection of “programmed mediocrity” that rids stem cells damaged by radiation allows blood cancers to grow in instances when the total body is irradiated. Furthermore, by reprogramming this defense, cancer may be prevented in the aftermath of full body radiation. “The body didn’t evolve to deal with leaking nuclear reactors and CT scans. It evolved to deal with only a few cells at a time receiving dangerous doses of radiation or other insults to their DNA,” said James DeGregori, PhD, investigator at the CU Cancer Center, professor of biochemistry and molecular genetics at the CU School of Medicine, and the article’s senior author.

Dr. DeGregori, doctoral student Courtney Fleenor, and colleagues examined the effects of full body radiation on the blood stem cells of mice. In this case, radiation increased the probability that cells in the hematopoietic stem cell system would differentiate. Only, while most obeyed this instruction, a few did not. Stem cells with a very specific mutation were able to disobey the instruction to differentiate and retain their “stemness.” Genetic inhibition of the gene C/EBPA allowed a few stem cells to keep the ability to act as stem cells. With competition from other, healthy stem cells removed, the stem cells with reduced C/EBPA were able to dominate the blood cell production system. In this way, the blood system transitioned from C/EBPA+ cells to primarily C/EBPA- cells.

Mutations and other genetic alterations resulting in inhibition of the C/EBPA gene are associated with acute myeloid leukemia in humans. Thus, it's not mutations caused by radiation but a blood system reengineered by faulty stem cells that creates cancer risk in people who have experienced radiation. “It’s about evolution driven by natural selection,” Dr. DeGregori noted. “In a healthy blood system, healthy stem cells out-compete stem cells that happen to have the C/EBPA mutation. But when radiation reduces the heath and robustness of the stem cell population, the mutated cells that have been there all along are suddenly given the opportunity to take over.”

These studies do not only clarify why radiation makes hematopoietic stem cells (HSCs) differentiate; they also show that by activating a stem cell maintenance pathway, we can keep it from happening. Even months after irradiation, artificially activating the NOTCH signaling pathway of irradiated HSCs lets them act “stemmy” again—restarting the blood cell assembly line in these HSCs that would have otherwise differentiated in response to radiation.

When Drs. DeGregori, Fleenor and colleagues triggered NOTCH in earlier irradiated HSCs, it kept the population of dangerous, C/EBPA cells at bay. Competition from non-C/EBPA-mutant stem cells, with their health restored by NOTCH activation, meant that there was no evolutionary space for C/EBPA-mutant stem cells.

“If I were working in a situation in which I was likely to experience full-body radiation, I would freeze a bunch of my HSCs,” Dr. DeGregori stated, explaining that an infusion of healthy HSCs after radiation exposure would likely allow the healthy blood system to out-compete the radiation-exposed HSC with their ‘programmed mediocrity’ [increased differentiation] and even HSC with cancer-causing mutations. “But there’s also hope that in the future, we could offer drugs that would restore the fitness of stem cells left over after radiation.”

Related Links:

University of Colorado Cancer Center


Portable Color Doppler Ultrasound System
S5000
Biopsy Software
Affirm® Contrast
New
Diagnostic Ultrasound System
DC-80A
Wall Fixtures
MRI SERIES

Channels

Ultrasound

view channel
Image: The new implantable device for chronic pain management is small and flexible (Photo courtesy of The Zhou Lab at USC)

Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery

Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more

Nuclear Medicine

view channel
Image: The diagnostic tool could improve diagnosis and treatment decisions for patients with chronic lung infections (Photo courtesy of SNMMI)

Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections

Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.