Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Iterative Reconstruction Techniques Help Reduce Radiation Dose for Pediatric Brain CT

By MedImaging International staff writers
Posted on 28 May 2014
Investigators have revealed that estimated radiation doses are substantially lower for pediatric computed tomography (CT) scans of the brain that use an adaptive statistical iterative reconstruction (ASIR) technique compared to those that did not use ASIR.

The researchers found that the brain and salivary gland doses were much lower for ASIR-enabled exams compared to those without ASIR technique. However, no differences in the estimated organ doses were found for the thyroid gland, skeleton, and eye lenses across these two cohorts of CT exams.

“CT radiation dose is an important concern with all imaging sites, especially for children,” said Dr. Ranish Deedar Ali Khawaja, from Massachusetts General Hospital (Boston, MA, USA) and Harvard Medical School (Boston, MA, USA). “We performed this study to do a preliminary analysis of pediatric head CT examinations and to assess the factors influencing radiation doses.”

Mean radiation dose was 1.6 ± 1.5 mSv (estimated effective dose) in pediatric head CT scans. In addition to the iterative reconstruction algorithm, patient age and effective body diameter substantially affected the doses. Dr. Khawaja and his colleagues presented the study’s findings at the 2014 American Roentgen Ray Society (ARRS) annual meeting, held in San Diego (CA, USA), May 4–9, 2014.

Related Links:

Massachusetts General Hospital
Harvard Medical School


Multi-Use Ultrasound Table
Clinton
Mammo DR Retrofit Solution
DR Retrofit Mammography
Digital Color Doppler Ultrasound System
MS22Plus
Silver Member
X-Ray QA Device
Accu-Gold+ Touch Pro

Channels

Nuclear Medicine

view channel
Image: LHSCRI scientist Dr. Glenn Bauman stands in front of the PET scanner (Photo courtesy of LHSCRI)

New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer

Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.