Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Linear-Quadratic Model May Simplify High-Dose Radiosurgery Planning

By MedImaging International staff writers
Posted on 08 Oct 2010
There is currently no simple way to determine the optimal dose level and treatment schedules for high-dose radiation therapies such as stereotactic radiation therapy, which is used to treat brain and lung cancer, or for high-dose brachytherapy for prostate and other cancers. More...
U.S. radiation oncologists may have solved the problem by developing a new mathematical model that encompasses all dose levels.

Typically, radiation therapy for cancer is administered in daily, low doses spread over many weeks. Oncologists frequently calculate the schedules for these fractionated, low-dose treatment courses using a mathematical model called the linear-quadratic (LQ) model. The same calculation model is used to assess radiation response, interpret clinical data, and guide clinical trials. "Unfortunately the LQ Model doesn't work well for high-dose radiation therapy,” stated coauthor Dr. Nina Mayr, professor of radiation oncology at the the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James; Columbus, USA). "Our study resolves this problem by modifying the current method to develop the Generalized LQ [gLQ] model that covers all dose levels and schedules.”

If confirmed clinically, the Generalized gLQ Model could guide the planning of dose and schedules needed for the newer radiosurgery and stereotactic radiation therapy and high-dose brachytherapy procedures that are increasingly used for cancer patients, Dr. Mayr stated. "Developing proper radiation dose schedules for these promising high-dose treatments is very challenging,” Dr. Mayr said. "Typically, it involves phase I dose-finding studies and a long, cumbersome process that allows only gradual progression from the preclinical and clinical trial stages to broader clinical practice.”

The new gLQ model could allow oncologists to design radiation dose schedules more effectively, help researchers conduct clinical trials for specific cancers faster, and make these high-dose therapies available to cancer patients much sooner, according to Dr. Mayr.

Fractionated low-dose therapy causes cumulative damage to tumor cells during the many weeks of exposure, while causing nominal damage to hardier normal cells. Patients, however, must return repeatedly to the hospital for many weeks to complete their treatment. High-dose therapy has become possible because of advances in computer and radiation technology. It uses multiple beams of radiation that conform tightly to a tumor's shape. They converge on the cancer to deliver higher total radiation levels, while sparing normal tissues. This kills more tumor cells per treatment, so far fewer treatments are needed overall.

The new study, published July 7, 2010, in the journal Science Translational Medicine, evaluated the gLQ model in cell and animal models, and is expected to be evaluated soon in clinical trials. "Our Generalized LQ model determines appropriate radiation levels across the entire wide spectrum of doses, from low and high, and from many to very few treatments, which is a new approach,” Dr. Mayr concluded.

Related Links:

Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute




High-Precision QA Tool
DEXA Phantom
Breast Localization System
MAMMOREP LOOP
X-ray Diagnostic System
FDX Visionary-A
Multi-Use Ultrasound Table
Clinton
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Nuclear Medicine

view channel
Image: Perovskite crystal boules are grown in carefully controlled conditions from the melt (Photo courtesy of Mercouri Kanatzidis/Northwestern University)

New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis

Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.