We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




MicroRNA Ratios Differentiate Melanomas from Nevi

By MedImaging International staff writers
Posted on 15 Oct 2019
Image: MicroRNA sequencing and optical algorithms can detect melanoma cells in skin tumors (Photo courtesy of Rodrigo Torres/ UCSF).
Image: MicroRNA sequencing and optical algorithms can detect melanoma cells in skin tumors (Photo courtesy of Rodrigo Torres/ UCSF).
A new study shows how an optical discrimination platform can detect malignant characteristics in a melanocytic tumor using specific microRNA (miRNA) patterns.

Developed at the University of California, San Francisco (UCSF; USA), the University of Utah (Salt Lake City, USA), and other institutions, the new technique applies a machine learning-based pipeline to a dataset consisting of genetic features, clinical features, and next-generation microRNA sequencing to tissues samples, in order to distinguish melanomas and their adjacent benign precursor nevi. The ML technique can detect eight specific expression ratios of miRNA patterns in the micro-dissected sections.

For the study, the researchers examined 82 biopsy specimens of moles and malignant melanomas, 41 of each type, taken from the medical records of the UCSF dermatopathology section. They then compared the new optical method of detecting malignant melanoma cells with the actual recorded outcomes. The results revealed a sensitivity of 81% and specificity of 88%, which was uninfluenced by either the age of the patient or by the presence of a large amount of benign cells in the same tumor. The study was published on June 20, 2019, in the Journal of Investigative Dermatology.

“We found that by developing a classifier based on a ratio of diagnostically important miRNA we could provide a more robust biomarker that was less susceptible to changes in tumor cell content and platform,” said lead author Rodrigo Torres, PhD, of UCSF. “The advantages of using miRNAs to distinguish benign and malignant melanocytic tumors include the fact that that they are easy to obtain from body fluids, are stable, inexpensive to measure and do not require very invasive techniques or a large amount of tissue.”

A miRNA is a short stretch of non-coding RNA that act to stop the production of protein by the RNA as and when indicated, typically by binding to a part of the RNA which is not involved in protein encoding. The miRNA expression profile variations between tissues, the relationships between them, and genetic and clinical features can help to identify the tissue a tumor originates from.

Related Links:
University of California, San Francisco
University of Utah

Diagnostic Ultrasound System
DC-80A
Computed Tomography System
Aquilion ONE / INSIGHT Edition
Digital X-Ray Detector Panel
Acuity G4
X-Ray Illuminator
X-Ray Viewbox Illuminators

Channels

Nuclear Medicine

view channel
Image: Perovskite crystal boules are grown in carefully controlled conditions from the melt (Photo courtesy of Mercouri Kanatzidis/Northwestern University)

New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis

Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.