We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Super-Resolution Imaging Technique Could Improve Evaluation of Cardiac Conditions

By MedImaging International staff writers
Posted on 13 May 2024
Print article
Image: Microscopic heart vessels have been imaged in super-resolution for the first time (Photo courtesy of Imperial College)
Image: Microscopic heart vessels have been imaged in super-resolution for the first time (Photo courtesy of Imperial College)

The heart depends on efficient blood circulation to pump blood throughout the body, delivering oxygen to tissues and removing carbon dioxide and waste. Yet, when heart vessels are damaged, it can disrupt normal blood flow, possibly leading to tissue damage and subsequent heart failure. A new imaging technique, now being tested on patients, could improve the assessment of cardiac conditions and undiagnosed chest pain.

Researchers from Imperial College London (London, UK) managed to capture sub-millimeter resolution images of cardiac micro-vessels, marking a significant advancement over current technologies that mainly visualize larger vessels on the heart’s surface. This innovative technique could allow for a more detailed study of heart physiology by imaging the smaller micro-vessels within the heart muscle. This advancement has the potential to improve clinicians' understanding of the role these vessels play in cardiovascular diseases such as microvascular coronary disease and cardiomyopathies, as well as in cases of undiagnosed chest pain. The technique was tested on four patients suffering from hypertrophic cardiomyopathy (HCM)—a condition characterized by abnormally thickened heart chamber walls and reduced blood flow.

For testing the technique, the team employed ultrasounds and microbubbles—tiny, gas-filled bubbles that help differentiate between internal structures in medical imaging—to visualize the microvascular structure and flow dynamics within the patients' hearts at super-resolution. The small size of the micro-vessels, coupled with the rapid motion of the heart, presents a significant challenge in achieving clear images, especially at resolutions finer than a millimeter. This technique could significantly aid in assessing various cardiac conditions. For instance, it could help clinicians visualize structural abnormalities in patients with microvascular coronary disease and cardiomyopathies, potentially leading to more accurate diagnoses and improved treatment outcomes.

“Visualizing cardiac vessels is crucial for managing cardiovascular diseases, but there is a lack of understanding of how the blood flows within the small vessels of the heart. Our study images these vessels non-invasively in the highest resolution which, following further research, could help clinicians to manage these diseases,” said Professor Mengxing Tang from Imperial College London. “This is the first time we demonstrated it is possible to image these vessels in such resolution, which has never been done before in humans. This has opened up a wide range of opportunities to study heart physiology and observe different diseases and conditions non-invasively and safely.”

Related Links:
Imperial College London

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Drape Barrier
Double Pivot Swing Arm Drape
New
Digital Radiography System
meX+20BT
Ultrasound System
Voluson Signature 18

Print article
Radcal

Channels

Radiography

view channel
Image: 3D cinematic renderings of the control and diseased heart in anatomic orientation (Photo courtesy of ESRF)

Innovative X-Ray Technique Captures Human Heart with Unprecedented Detail

Cardiovascular disease remains the leading cause of death globally. In 2019, ischemic heart disease, which weakens the heart due to reduced blood supply, accounted for approximately 8.9 million or 16%... Read more

MRI

view channel
Image: SubtleSYNTH creates synthetic STIR images with zero acquisition time that are interchangeable with conventionally acquired STIR images (Photo courtesy of Subtle Medical)

AI-Powered Synthetic Imaging Software to Further Redefine Speed and Quality of Accelerated MRI

The development of innovative solutions is not only redefining the landscape of artificial intelligence (AI)-based diagnostic imaging but also simplifying the ever-increasing complexity of workflows faced... Read more

General/Advanced Imaging

view channel
Image: HeartFlow Plaque Analysis leverages cutting-edge AI for assessment of plaque quantity and composition (Photo courtesy of HeartFlow, Inc.)

Next Gen Interactive Plaque Analysis Platform Assesses Patient Risk in Suspected Coronary Artery Disease

A first-of-its-kind plaque analysis tool to be fully integrated with FFRCT (when FFRCT is performed) provides impactful insights that enhance clinical decision-making and enable personalized patient treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The new collaborations aim to further advance AI foundation models for medical imaging (Photo courtesy of Microsoft)

Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging

Medical imaging is a critical component of healthcare, with health systems spending roughly USD 65 billion annually on imaging alone, and about 80% of all hospital and health system visits involve at least... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.