We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

By MedImaging International staff writers
Posted on 01 May 2024
Print article
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead to blood cancers. Interestingly, it is also present in individuals with normal blood counts, where it is linked with a heightened risk of severe atherosclerotic cardiovascular disease. Studies have shown that clonal hematopoiesis becomes more common with age, being detectable in up to 15% of individuals over 70. While it can progress to malignant blood diseases, its significant impact is the reduction in life expectancy due to an increased risk of atherosclerotic cardiovascular disease, which at its advanced stage, can cause heart attacks and strokes due to arterial blockages.

Now, a research team at the Medical University of Vienna (Vienna, Austria) has designed a genetic testing method for detecting clonal hematopoiesis. Combined with an ultrasound examination of the carotid artery, this testing approach can identify individuals at high risk for cardiovascular disease. For their research, the team focused on the impact of clonal hematopoiesis on patients with asymptomatic, verified carotid stenosis—a narrowing of the carotid artery due to atherosclerosis. They developed a novel assay employing high-throughput DNA sequencing for targeted genetic testing to detect mutations that cause clonal hematopoiesis. This testing method was applied to around 1,000 blood samples from the ICARAS study (Inflammation and Carotid Artery-Risk for Atherosclerosis Study).

The study revealed a significant increase in mortality among patients who have both carotid stenosis and clonal hematopoiesis. The joint detection of clonal hematopoiesis and carotid atherosclerosis led to the identification of a new combined biomarker that enhances the personalization of cardiovascular risk profiles. This allows for the early identification of high-risk patients, which in turn facilitates the timely adjustment of treatment plans and the prevention of the progression of atherosclerotic diseases, thereby reducing the incidence of strokes and heart attacks.

By utilizing ultrasound-based duplex sonography along with this innovative genetic testing, elevated cardiovascular risk can now be detected well before any symptoms of the disease appear. According to the researchers, “the results of this study provide the basis for future studies to investigate the role of clonal haematopoiesis in cardiovascular diseases", with the goal of implementing such genetic diagnostics in laboratory medicine.

Related Links:
Medical University of Vienna

Print article



view channel
Image: Physicians using the Zenition 90 Motorized mobile X-ray system (Photo courtesy of Royal Philips)

High-Powered Motorized Mobile C-Arm Delivers State-Of-The-Art Images for Challenging Procedures

During complex surgical procedures, clinicians depend on surgical imaging systems as they navigate challenging anatomy to quickly visualize small anatomical details while minimizing X-ray exposure.... Read more


view channel
Image: The device creates microbubbles that temporarily disrupt the BBB, permitting the entry of immunotherapy into the brain (Photo courtesy of Northwestern)

Ultrasound Technology Breaks Blood-Brain Barrier for Glioblastoma Treatment

Despite extensive molecular studies, the outlook for patients diagnosed with the aggressive brain cancer known as glioblastoma (GBM) continues to be poor. This is partly due to the blood-brain barrier... Read more

Nuclear Medicine

view channel
Image: 68Ga-NC-BCH whole-body PET imaging rapidly targets an important gastrointestinal cancer biomarker in lesions in GI cancer patients (Photo courtesy of Qi, Guo, et al.; doi.org/10.2967/jnumed.123.267110)

New PET Radiotracer Enables Same-Day Imaging of Key Gastrointestinal Cancer Biomarker

Gastrointestinal cancers rank among the most prevalent cancers worldwide, contributing to over a quarter of all cancer cases and over one-third of cancer-related deaths annually. The initial symptoms of... Read more

General/Advanced Imaging

view channel
Image: The denoised image is less noisy and the defect is more detectable and visually clearer with DEMIST (Photo courtesy of Abhinav Jha/WUSTL)

Artificial Intelligence Tool Enhances Usability of Medical Images

Doctors use myocardial perfusion imaging (MPI) single-photon emission computed tomography (SPECT) images to evaluate blood flow to the heart muscle. To capture these images, patients are administered a... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.