We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Model Combines Blood Test and CT Scan Analysis to Predict Therapy Responses in Ovarian Cancer Patients

By MedImaging International staff writers
Posted on 23 Nov 2023
Print article
Image: Artificial intelligence predicts therapy responses for ovarian cancer (Photo courtesy of 123RF)
Image: Artificial intelligence predicts therapy responses for ovarian cancer (Photo courtesy of 123RF)

Ovarian cancer annually impacts thousands of women, with many diagnoses occurring at advanced stages due to subtle early symptoms. High-grade serous ovarian carcinoma, which accounts for 70-80% of ovarian cancer cases, is particularly aggressive and often resistant to chemotherapy. Current methods for predicting response to therapy in these tumors are only about 50% accurate. The complexity and diversity of the disease among individuals have made it challenging to find reliable biomarkers. Now, researchers have developed an artificial intelligence (AI)-based tool to improve the accuracy of predicting chemotherapy responses in patients with ovarian cancer.

The tool, named IRON (Integrated Radiogenomics for Ovarian Neoadjuvant therapy), was developed by researchers at the Catholic University of the Sacred Heart (Milan, Italy). IRON analyzes a range of clinical features, including circulating tumor DNA from blood samples (liquid biopsy), patient demographics (age, health status, etc.), tumor markers, and CT scan images. It then predicts the likelihood of a successful therapy outcome, specifically the volumetric reduction of tumor lesions. Impressively, IRON can predict therapy outcomes with an 80% accuracy rate, a significant improvement over existing clinical methods.

For their research, the team compiled two datasets comprising 134 patients in total, with 92 in the first dataset and 42 in a separate validation set. They collected comprehensive clinical data for these patients, including demographic information, treatment specifics, blood biomarkers like CA-125, and circulating tumor DNA. Additionally, they gathered quantitative details from CT scans of all primary and metastatic tumor sites. Notably, omental and pelvic/ovarian sites, where ovarian cancer commonly spreads, were observed to carry the majority of the disease burden initially. It was found that omental deposits responded better to neoadjuvant therapy compared to pelvic disease.

The researchers also examined tumor mutations (such as TP53 MAF in circulating DNA) and the CA-125 marker in relation to the overall disease burden before treatment and response to therapy. Advanced analysis of CT scan images identified six patient subgroups, each with unique biological and clinical features indicative of their response to therapy. These tumor characteristics were fed into AI algorithms, creating a comprehensive model. After being trained, the model’s effectiveness was validated using the independent patient sample, showcasing its potential to enhance ovarian cancer treatment strategies.

"From a clinical perspective, the proposed framework addresses the unmet need to early identify patients unlikely to respond to neoadjuvant therapy and may be directed to immediate surgical intervention," said Professor Evis Sala who coordinated the study.

Related Links:
Catholic University of the Sacred Heart 

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Silver Member
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers
Mammography System
MAMMOVISTA B.smart
New
Compact C-Arm with FPD
Arcovis DRF-C R21

Print article
Radcal

Channels

Radiography

view channel
Image: LumiGuide enables doctors to navigate through blood vessels using light instead of X-ray (Photo courtesy of Philips)

3D Human GPS Powered By Light Paves Way for Radiation-Free Minimally-Invasive Surgery

In vascular surgery, doctors frequently employ endovascular surgery techniques using tools such as guidewires and catheters, often accessing through arteries like the femoral artery. This method is known... Read more

MRI

view channel
Image: The VR visualization platform provides patients and surgeons with access to real-time 3D medical imaging (Photo courtesy of Avatar Medical)

VR Visualization Platform Creates 3D Patient Avatars from CT and MR Images in Real-Time

Surgeons and patients must currently rely on black and white medical images interpreted by radiologists. This limitation becomes more pronounced in complex surgeries, leading to issues such as patient... Read more

Ultrasound

view channel
Image: Intravascular ultrasound provides a more accurate and specific picture of the coronary arteries (Photo courtesy of 123RF)

Intravascular Imaging Significantly Improves Outcomes in Cardiovascular Stenting Procedures

Individuals with coronary artery disease, which involves plaque accumulation in the arteries leading to symptoms like chest pain, shortness of breath, and heart attacks, often undergo a non-surgical procedure... Read more

Nuclear Medicine

view channel
Image: The PET imaging technique can noninvasively detect active inflammation before clinical symptoms arise (Photo courtesy of 123RF)

New PET Tracer Detects Inflammatory Arthritis Before Symptoms Appear

Rheumatoid arthritis, the most common form of inflammatory arthritis, affects 18 million people globally. It is a complex autoimmune disease marked by chronic inflammation, leading to cartilage and bone... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The acquisition will expand IBA’s medical imaging quality assurance offering (Photo courtesy of Radcal)

IBA Acquires Radcal to Expand Medical Imaging Quality Assurance Offering

Ion Beam Applications S.A. (IBA, Louvain-La-Neuve, Belgium), the global leader in particle accelerator technology and a world-leading provider of dosimetry and quality assurance (QA) solutions, has entered... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.