We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Sustainable Solar Cell Material Could Revolutionize Medical Imaging

By MedImaging International staff writers
Posted on 23 May 2023
Print article
Image: BiOI ruby-like crystals can improve medical imaging safety by lowering intensities of harmful X-rays (Photo courtesy of University of Cambridge)
Image: BiOI ruby-like crystals can improve medical imaging safety by lowering intensities of harmful X-rays (Photo courtesy of University of Cambridge)

The use of X-rays for internal body imaging has dramatically changed non-invasive medical diagnostics. Yet, the high dose of X-rays required for these imaging techniques, due to the poor performance of currently used detector materials, can harm patients, even potentially leading to cancer. Now, scientists have discovered that bismuth oxyiodide (BiOI), a material used in solar cells, can detect X-ray dose rates over 250 times lower than the best commercially used detectors. This discovery could make medical imaging safer and pave the way for new non-invasive diagnostics, such as X-ray video techniques.

BiOI is non-toxic semiconductor that absorbs visible light and remains stable in air, qualities that have led to a growing interest in its use for solar cells, photoelectrochemical cells, and energy harvesting to power smart devices over the past decade. Moreover, the presence of two heavy elements – bismuth and iodine – in BiOI facilitates strong X-ray absorption. However, prior attempts to utilize BiOI as X-ray detectors proved ineffective due to substantial energy losses caused by defects resulting from the nanocrystalline nature of the detectors.

A team of researchers, jointly led by the University of Oxford (Oxford, UK) and the University of Cambridge (Cambridge, UK), has developed and patented a scalable vapor-based method for growing high-quality single crystals of BiOI. The low defect density in these crystals facilitated stable and ultra-low dark currents, which significantly improved the sensitivity and detection limit of this material to X-rays. To understand why BiOI functions so effectively as an X-ray detector, the researchers conducted advanced optical techniques to resolve processes taking place over a trillionth of a second and combined them with simulations to link these processes with what is happening at the atomic level.

The collaborative study revealed the unique manner in which electrons couple with vibrations in the lattice. Unlike other bismuth-halide compounds, electrons in BiOI remain delocalized, allowing them to move easily and swiftly within the BiOI lattice. Simultaneously, the unique electron coupling with lattice vibrations leads to an irreversible energy loss channel that would remain even if the material was defect-free. The researchers determined that these losses could be overcome by reducing thermal energy via cooling the sample, or by applying an electric field to separate electrons from the lattice, which aligns well with how X-ray detectors function. By applying a minor electric field, electrons can be transported over a millimeter scale, facilitating the efficient extraction of electrons generated in the single crystals through X-ray absorption.

The study offers valuable insights into how delocalized charge carriers can be achieved in bismuth-halide compounds. The researchers are now focusing on leveraging these insights to develop materials with properties similar to BiOI, and on adjusting the composition of BiOI to further enhance its transport properties. They are also working on increasing the size of BiOI detectors while maintaining the exceptional properties of single crystals in order to deliver the unique benefits of BiOI to society.

“We have developed BiOI single crystals into X-ray detectors that work over 100 times better than the current state-of-the-art for medical imaging,” said Robert Hoye, Associate Professor of Inorganic Chemistry at Oxford, who led the work. “BiOI is nontoxic, stable in air, and can be grown cost-effectively and at scale. We are very excited by the potential BiOI has to make the next generation of non-invasive diagnostics more accessible, safer, and more effective.”

“Showing that these simply-processed, low-temperature grown, stable crystals can give such high sensitivity for X-ray detection is quite remarkable,” added Judith Driscoll, Professor at the University of Cambridge and co-lead on the work. “We began working on this material, BiOI, several years ago, and we find it outshines other rival materials in a range of optoelectronic/sensing applications, when toxicity and performance are considered together.”

Related Links:
University of Oxford
University of Cambridge

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Digital Radiography Generator
meX+20BT lite
Portable Radiology System
DRAGON ELITE & CLASSIC
Thyroid Shield
Standard Thyroid Shield

Print article
Radcal

Channels

MRI

view channel
Image: Exablate Prime features an enhanced user interface and enhancements to optimize productivity (Photo courtesy of Insightec)

Next Generation MR-Guided Focused Ultrasound Ushers In Future of Incisionless Neurosurgery

Essential tremor, often called familial, idiopathic, or benign tremor, leads to uncontrollable shaking that significantly affects a person’s life. When traditional medications do not alleviate symptoms,... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.