We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
30 Jan 2023 - 02 Feb 2023

AI Diagnostic Tool Performs On Par with Radiologists in Detecting Diseases on Chest X-Rays

By MedImaging International staff writers
Posted on 19 Sep 2022
Print article
Image: New tool overcomes major hurdle in clinical AI design (Photo courtesy of Unsplash)
Image: New tool overcomes major hurdle in clinical AI design (Photo courtesy of Unsplash)

Most artificial intelligence (AI) models require labeled datasets during their “training” so they can learn to correctly identify pathologies. This process is especially burdensome for medical image-interpretation tasks since it involves large-scale annotation by human clinicians, which is often expensive and time-consuming. For instance, to label a chest X-ray dataset, expert radiologists would have to look at hundreds of thousands of X-ray images one by one and explicitly annotate each one with the conditions detected. While more recent AI models have tried to address this labeling bottleneck by learning from unlabeled data in a “pre-training” stage, they eventually require fine-tuning on labeled data to achieve high performance. Now, scientists have developed an AI diagnostic tool that can detect diseases on chest X-rays directly from natural-language descriptions contained in accompanying clinical reports.

The new model named CheXzero that was developed by scientists at Harvard Medical School (Boston, MA, USA) and colleagues at Stanford University (Stanford, CA, USA) is self-supervised, in the sense that it learns more independently, without the need for hand-labeled data before or after training. The step is deemed a major advance in clinical AI design because most current AI models require laborious human annotation of vast reams of data before the labeled data are fed into the model to train it. The model relies solely on chest X-rays and the English-language notes found in accompanying X-ray reports. The model was “trained” on a publicly available dataset containing more than 377,000 chest X-rays and more than 227,000 corresponding clinical notes.

Its performance was then tested on two separate datasets of chest X-rays and corresponding notes collected from two different institutions, one of which was in a different country. This diversity of datasets was meant to ensure that the model performed equally well when exposed to clinical notes that may use different terminology to describe the same finding. Upon testing, the researchers successfully identified pathologies that were not explicitly annotated by human clinicians. It outperformed other self-supervised AI tools and performed with accuracy similar to that of human radiologists. The approach, the researchers said, could eventually be applied to imaging modalities well beyond X-rays, including CT scans, MRIs, and echocardiograms.

“We’re living the early days of the next-generation medical AI models that are able to perform flexible tasks by directly learning from text,” said study lead investigator Pranav Rajpurkar, assistant professor of biomedical informatics in the Blavatnik Institute at HMS. “Up until now, most AI models have relied on manual annotation of huge amounts of data - to the tune of 100,000 images - to achieve a high performance. Our method needs no such disease-specific annotations.”

“With CheXzero, one can simply feed the model a chest X-ray and corresponding radiology report, and it will learn that the image and the text in the report should be considered as similar—in other words, it learns to match chest X-rays with their accompanying report,” Rajpurkar added. “The model is able to eventually learn how concepts in the unstructured text correspond to visual patterns in the image.”

Related Links:
Harvard Medical School 
Stanford University 

Gold Supplier
Ultrasound Transducer/Probe Cleaner
Transeptic Cleaning Solution
New
Fetal Monitor
FCM – 100A
New
Mobile Radiographic Table
CT160
New
Point-Of-Care Ultrasound System
5000 Compact Series

Print article
CIRS -  MIRION

Channels

MRI

view channel
Image: BlueSeal magnet for helium-free MR operations (Photo courtesy of Philips)

Use of High-Temperature Superconductors to Make MR Imaging More Affordable, Accessible and Sustainable

A new research partnership focuses on the use of high-temperature superconductors to make MR imaging more affordable, accessible and sustainable in the future. Operating at higher temperatures and eliminating... Read more

Ultrasound

view channel
Image: A combination of ultrasound and nanobubbles allows cancerous tumors to be destroyed without surgery (Photo courtesy of Tel Aviv University)

Ultrasound Combined With Nanobubbles Enables Removal of Tumors Without Surgery

The prevalent method of cancer treatment is surgical removal of the tumor, in combination with complementary treatments such as chemotherapy and immunotherapy. Therapeutic ultrasound to destroy the cancerous... Read more

General/Advanced Imaging

view channel
Image: Ultra-high-resolution photon-counting CT reveals bronchiolectasis (Photo courtesy of Medical University of Vienna)

Photon-Counting CT Shows More Post-COVID-19 Lung Damage

Photon-counting detector (PCD) CT has emerged in the last decade as a promising imaging tool. It works by converting X-ray photons directly into an electrical signal. This avoids the intermediate step... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.