We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Innovative X-Ray Technique Captures Human Heart with Unprecedented Detail

By MedImaging International staff writers
Posted on 26 Jul 2024
Print article
Image: 3D cinematic renderings of the control and diseased heart in anatomic orientation (Photo courtesy of ESRF)
Image: 3D cinematic renderings of the control and diseased heart in anatomic orientation (Photo courtesy of ESRF)

Cardiovascular disease remains the leading cause of death globally. In 2019, ischemic heart disease, which weakens the heart due to reduced blood supply, accounted for approximately 8.9 million or 16% of global deaths, an increase of over two million since the year 2000. Traditional imaging techniques like ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) used in diagnosing cardiovascular diseases do not provide comprehensive structural details of what is occurring within the organs. Detailed organ analysis typically requires physically slicing the organs into thin sections for scanning, which restricts the overall viewable area. In recent developments, synchrotron radiation, a type of particle accelerator, has enabled advanced imaging techniques that surpass these restrictions. Although prior synchrotron studies have been conducted on whole fetal and small animal hearts, these were limited to small scales. Now, for the first time, researchers have used a synchrotron X-ray imaging technique to visualize two entire human adult hearts, both healthy and diseased, at the cellular level in 3D.

The innovative X-ray technique called Hierarchical Phase-Contrast Tomography (HiP-CT) adopted by scientists at the University College London (UCL, London, UK) and the European Synchrotron (ESRF, Grenoble, France) overcomes the limitations of existing imaging techniques by providing a comprehensive and detailed 3D view of the entire adult human heart. This technique offers a complete 3D visualization at a 20-micron resolution—20 times more detailed than typical clinical CT scans—and can further zoom into a 2-micron cellular level resolution, achieving histological detail without physically sectioning the sample. This method allows for the imaging of whole organs in detail, uncovering previously unseen structures and connections.

A significant feat of the study published in Radiology is the detailed imaging of the cardiac conduction system, which is responsible for generating and transmitting the electrical impulses that coordinate the heart’s pumping action. Virtual slicing of this system provided insights into aspects such as fatty infiltration and the vascular pathways linking cardiac nodes with surrounding structures, offering a depth of detail never before achieved with traditional imaging methods. This new level of detail could prove crucial in treating conditions like arrhythmias, as it helps in understanding the variations in tissue thickness and fat layers between the heart’s outer surface and its protective sac. Beyond arrhythmias, HiP-CT's capabilities extend to exploring other cardiovascular conditions. Current anatomical studies aim to further examine congenital heart defects, such as single ventricle diseases. The next steps for the research team include expanding the sample size and continuing to analyze the structural architecture of the heart in both healthy and diseased states, to foster new diagnostic and therapeutic approaches.

“With today’s technology, an accurate interpretation of the anatomy underlying conditions such as arrhythmia is very difficult. So, there is enormous potential to inspire new treatments using the imaging technique that we’ve demonstrated here,” said Professor Andrew Cook, an author of the study and a heart anatomist from the UCL Institute of Cardiovascular Science. “We believe that our findings will help researchers understand the onset of cardiac rhythm abnormalities and also the efficacy of ablation strategies to cure them. For example, we now have a way to determine differences in the thickness of tissue and fat layers located between the outer surface of the heart and the protective sac surrounding the heart, which could be relevant when treating arrhythmia.”

Related Links:
University College London
European Synchrotron

Ultrasound Scanner
TBP-5533
Ultra-Flat DR Detector
meX+1717SCC
New
Digital Radiographic System
OMNERA 300M
Wall Fixtures
MRI SERIES

Print article

Channels

Ultrasound

view channel
Image: The addition of POC ultrasound can enhance first trimester obstetrical care (Photo courtesy of 123RF)

POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits

A new study has found that implementing point-of-care ultrasounds (POCUS) in clinics to assess the viability and gestational age of pregnancies in the first trimester improved care for pregnant patients... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.