We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Novel Radiotracer Lights up PET Scan for Earlier Disease Detection

By MedImaging International staff writers
Posted on 21 Feb 2024
Print article
Image: The discovery can enable earlier detection and care of cancers, as well as brain and heart conditions (Photo courtesy of 123RF)
Image: The discovery can enable earlier detection and care of cancers, as well as brain and heart conditions (Photo courtesy of 123RF)

Most positron emission tomography (PET) imaging systems work by tracing how the body utilizes a radioactive form of glucose for energy. This method is particularly effective for many cancers, as they tend to consume glucose as their primary metabolic fuel, making them easily identifiable on glucose PET scans. However, certain cancers do not primarily use glucose, and some healthy organs like the brain and heart also have high glucose usage, posing challenges in distinguishing some diseases with this imaging technique. Now, scientists have developed a new radiotracer that can map how cells use fructose for energy.

Fructose, commonly referred to as “fruit sugar,” is a different type of metabolic fuel. Found naturally in fruits, honey, and numerous processed foods, fructose is increasingly recognized as a potential fuel source in disease processes. Unlike glucose, fructose is not a standard fuel for the healthy brain and heart, and its use is primarily confined to the liver and kidneys in healthy individuals. The new radiotracer named [18F]4-FDF has been developed by scientists at the University of Ottawa (Ontario, Canada) and can identify areas in the body where fructose is being utilized. This can facilitate the early identification of a wide range of diseases, including various cancers and inflammation in the heart and brain.

The innovative [18F]4-FDF compound is a specially engineered form of fructose and incorporates a radioactive fluorine atom at a key chemical position. This modification enables researchers to monitor the metabolism of fructose within the body. By utilizing PET camera imaging, a standard tool in diagnostic imaging, it is possible to view the increased uptake of fructose by malfunctioning organs and tissues, thus enabling the detection of early signs of inflammation. The development of this fructose-based radiotracer marks a significant advancement, offering new possibilities for earlier detection and treatment of cancers and conditions affecting the brain and heart.

“For the first time, we can see where fructose, a common dietary sugar, is used in the body. Outside of the kidneys and the liver, fructose metabolism in any other organs may point to a sinister problem including cancer and inflammation,” said Professor Adam Shuhendler from uOttawa’s Faculty of Science.

Related Links:
University of Ottawa

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Full Field Digital Mammography Phantom
Mammo FFDM Phantom
FMT Radiographic Suite
AdvantagePlus ML1
Ultrasound System
Voluson Signature 18

Print article
Radcal

Channels

Radiography

view channel
Image: 3D cinematic renderings of the control and diseased heart in anatomic orientation (Photo courtesy of ESRF)

Innovative X-Ray Technique Captures Human Heart with Unprecedented Detail

Cardiovascular disease remains the leading cause of death globally. In 2019, ischemic heart disease, which weakens the heart due to reduced blood supply, accounted for approximately 8.9 million or 16%... Read more

MRI

view channel
Image: SubtleSYNTH creates synthetic STIR images with zero acquisition time that are interchangeable with conventionally acquired STIR images (Photo courtesy of Subtle Medical)

AI-Powered Synthetic Imaging Software to Further Redefine Speed and Quality of Accelerated MRI

The development of innovative solutions is not only redefining the landscape of artificial intelligence (AI)-based diagnostic imaging but also simplifying the ever-increasing complexity of workflows faced... Read more

Ultrasound

view channel
Image: The new FDA-cleared AI-enabled applications have been integrated into the EPIQ CVx and Affiniti CVx ultrasound systems (Photo courtesy of Royal Philips)

Next-Gen AI-Enabled Cardiovascular Ultrasound Platform Speeds Up Analysis

Heart failure is a significant global health challenge, affecting approximately 64 million individuals worldwide. It is associated with high mortality rates and poor quality of life, placing a considerable... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The new collaborations aim to further advance AI foundation models for medical imaging (Photo courtesy of Microsoft)

Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging

Medical imaging is a critical component of healthcare, with health systems spending roughly USD 65 billion annually on imaging alone, and about 80% of all hospital and health system visits involve at least... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.