We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Novel Imaging Agent Non-Invasively Identifies Early Stage Pulmonary Fibrosis

By MedImaging International staff writers
Posted on 22 Jun 2023
Print article
Image: Preclinical molecular imaging of pulmonary fibrosis progression (Photo courtesy of University Hospital Tübingen)
Image: Preclinical molecular imaging of pulmonary fibrosis progression (Photo courtesy of University Hospital Tübingen)

Pulmonary fibrosis, a lethal condition, typically presents a survival rate of three to five years post-diagnosis. Diagnosing the disease in its advanced stages is relatively easy, yet pinpointing the earliest stages, when treatments are most effective, can prove challenging. At present, the standard clinical diagnosis of pulmonary fibrosis depends on breath tests and CT scans to observe changes in lung structure. However, these anatomical details often fall short of detecting the early indicators of the disease. Now, a newly-formulated PET imaging agent offers a non-invasive means to spot pulmonary fibrosis in its nascent stages, reducing unnecessary biopsies and facilitating earlier treatment initiation.

Pulmonary fibrosis in patients results in lung tissue remodeling due to the increased deposition of extracellular matrix fibers such as collagen I-III, fibronectin, and fibrinogen. In a study, researchers at Eberhard Karls University of Tübingen (Tübingen, Germany) used an imaging agent named 64Cu-GPVI-Fc, designed to target these extracellular matrix fibers, in order to detect pulmonary fibrosis in a mouse model. The results were then compared to histological findings and 18F-FDG PET imaging results. The researchers found that 64Cu-GPVI-Fc demonstrated substantial uptake in lungs afflicted with pulmonary fibrosis, which was in line with the histological outcomes. Unlike the 18F-FGD PET imaging results, the uptake of 64Cu-GPVI-Fc was exclusively associated with pulmonary fibrosis activity in the lung tissues and did not detect any inflammation.

“In a disease with such a large impact on the patients’ quality of life and with such a reduced life expectancy after diagnosis, it is critical that proper diagnosis and treatment follow-up methods are specific and sensitive enough that optimal medical care can be given. We believe 64Cu-GPVI-Fc takes us one step closer to personalized medicine for pulmonary fibrosis,” said Nicolas Bézière, PhD, head of Imaging of Infection and Inflammation at the Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy at Eberhard Karls University of Tübingen. “We hope that this approach based on a tracer targeting a range of extracellular matrix fibers will provide a new way to view the ‘complete picture’ of pulmonary fibrosis progression and act as a new method to monitor treatment efficacy. Furthermore, fibrosis is not limited to the lungs, it can develop in other organs and lead to a loss of their function. Thus, we can foresee the transfer of this approach to other fibrotic diseases.”

Related Links:
Eberhard Karls University of Tübingen

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ceiling-Mounted Digital Radiography System
Radiography 5000 C
New
Ultrasound System
Voluson Signature 18
New
Digital Radiography Generator
meX+20BT lite

Print article

Channels

MRI

view channel
Image: Diamond dust offers a potential alternative to the widely used contrast agent gadolinium in MRI (Photo courtesy of Max Planck Institute)

Diamond Dust Could Offer New Contrast Agent Option for Future MRI Scans

Gadolinium, a heavy metal used for over three decades as a contrast agent in medical imaging, enhances the clarity of MRI scans by highlighting affected areas. Despite its utility, gadolinium not only... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.