We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Predicts Risk of Lung Cancer Returning Using CT Scans

By MedImaging International staff writers
Posted on 28 Dec 2022
Print article
Image: The OCTAPUS-AI study used machine learning to see how accurately it could predict lung cancer recurrence (Photo courtesy of Pexels)
Image: The OCTAPUS-AI study used machine learning to see how accurately it could predict lung cancer recurrence (Photo courtesy of Pexels)

Non-small cell lung cancer (NSCLC) makes up nearly five sixths (85%) of lung cancer cases and, when caught early, the disease is often curable. However, over a third (36%) of NSCLC patients in the UK experience their cancer returning, which is known as recurrence. Artificial intelligence (AI) could help identify the risk of cancer returning in NSCLC patients using CT scans, according to the latest results from a study.

The latest phase of the OCTAPUS-AI study led by researchers from The Royal Marsden NHS Foundation Trust (London, UK) used imaging and clinical data from over 900 NSCLC patients from the UK and Netherlands following curative radiotherapy to develop and test machine learning (ML) algorithms to see how accurately the models could predict recurrence. A measurement known as “area under the curve” (AUC) was used to express the effectiveness of this tool. An AUC of one means the system is right every time; 0.5 is the score you would expect if it was randomly guessing and zero means it is always wrong.

The imaging data was taken from treatment planning CT scans, which all NSCLC patients have prior to radiotherapy. To analyze this data, researchers used a technique called radiomics, which can extract prognostic information about the patient’s disease from medical images that can’t be seen by the human eye. Data from this technique can also potentially be linked with biological markers. As a result, researchers believe radiomics could be a useful tool in both personalizing medicine as well as improving post-treatment surveillance.

The study results reveal that the researchers’ model was better at correctly identifying which NSCLC patients were at a higher risk of recurrence within two years of completing radiotherapy, than a model built on the TNM staging system. This model achieved an AUC of 0.738, improving on the traditional TNM staging technique which scored 0.683. TNM, which describes the amount and spread of cancer in a patient's body, is currently the gold-standard in predicting the prognosis of cancer patients.

“While at a very early stage, this work suggests that our model could be better at correctly predicting tumor regrowth than traditional methods. This means that, using our technology, clinicians may eventually be able to identify recurrence earlier in high-risk patients,” said study lead Dr. Sumeet Hindocha, Clinical Oncology Specialist Registrar at The Royal Marsden NHS Foundation Trust, and Clinical Research Fellow at Imperial College London. “Next, we want to explore more advanced machine learning techniques, such as deep learning, to see if we can get even better results. We then want to test this model on newly diagnosed NSCLC patients and follow them to see if the model can accurately predict their risk of recurrence.”

Related Links:
The Royal Marsden NHS Foundation Trust 

New
Gold Supplier
Electrode Solution and Skin Prep
Signaspray
Gold Supplier
Ultrasound System
FUTUS LE
New
Web-Based DICOM Viewer
iQ-4VIEW
New
Digital X-Ray Detector Panel
Acuity G4

Print article
Radcal

Channels

Radiography

view channel
Image: Intelligent NR provides high-quality diagnostic images containing significantly less grainy noise (Photo courtesy of Canon)

AI-Driven DR System Produces Higher Quality Images While Limiting Radiation Doses in Pediatric Patients

Ionizing radiation is a fundamental element in producing diagnostic X-rays, yet it's widely acknowledged for its cancer risk potential. Digital projection radiography, a vital imaging modality, accounts... Read more

MRI

view channel
Image: The researchers are using MRI-guided radiation therapy that pairs daily MRIs with radiation treatment (Photo courtesy of Sylvester)

AI Technique Automatically Traces Tumors in Large MRI Datasets to Guide Real-time Glioblastoma Treatment

Treating glioblastoma, a prevalent and aggressive brain cancer, involves the use of radiation therapy guided by CT imaging. While this method is effective in targeting radiation, it doesn't provide real-time... Read more

Ultrasound

view channel
Image: The new ultrasound patch can measure how full the bladder is (Photo courtesy of MIT)

Ultrasound Patch Designed to Monitor Bladder and Kidney Health Could Enable Earlier Cancer Diagnosis

Bladder dysfunction and related health issues affect millions worldwide. Monitoring bladder volume is crucial for assessing kidney health. Traditionally, this requires a visit to a medical facility and... Read more

Nuclear Medicine

view channel
Image: A novel PET radiotracer facilitates early, noninvasive detection of IBD (Photo courtesy of Karmanos)

New PET Radiotracer Aids Early, Noninvasive Detection of Inflammatory Bowel Disease

Inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcerative colitis, is an inflammatory condition of the gastrointestinal tract affecting roughly seven million individuals globally.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Attendees can discover innovative products and technology in the RSNA 2023 Technical Exhibits (Photo courtesy of RSNA)

RSNA 2023 Technical Exhibits to Offer Innovations in AI, 3D Printing and More

The 109th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA, Oak Brook, IL, USA) to be held in Chicago, Nov. 26 to 30 is all set to offer a vast array of medical... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.