We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

‘Covid Computer’ Uses AI to Detect COVID-19 from Chest CT Scans

By MedImaging International staff writers
Posted on 04 Jul 2022
Print article
Image: Researchers have created ‘Covid computer’ to speed up diagnosis (Photo courtesy of Pexels)
Image: Researchers have created ‘Covid computer’ to speed up diagnosis (Photo courtesy of Pexels)

Currently, the diagnosis of COVID-19 is based on nucleic acid testing, or PCR tests as they are commonly known. These tests can produce false negatives and results can also be affected by hysteresis – when the physical effects of an illness lag behind their cause. Artificial intelligence (AI) offers an opportunity to rapidly screen and effectively monitor COVID-19 cases on a large scale, reducing the burden on doctors. Now, researchers have created a new AI tool that can detect COVID-19. The software analyses chest CT scans and uses deep learning algorithms to accurately diagnose the disease. With an accuracy rate of 97.86%, it is currently the most successful COVID-19 diagnostic tool in the world.

Researchers from the University of Leicester (Leicester, UK) who developed the new AI tool will now further develop this technology in the hope that the Covid computer may eventually replace the need for radiologists to diagnose COVID-19 in clinics. The software, which can even be deployed in portable devices such as smart phones, will also be adapted and expanded to detect and diagnose other diseases (such as breast cancer, Alzheimer’s Disease, and cardiovascular diseases).

"Our research focuses on the automatic diagnosis of COVID-19 based on random graph neural network. The results show that our method can find suspicious regions in the chest images automatically and make accurate predictions based on the representations," said Professor Yudong Zhang, Professor of Knowledge Discovery and Machine Learning at the University of Leicester. "The accuracy of the system means that it can be used in the clinical diagnosis of COVID-19, which may help to control the spread of the virus. We hope that, in the future, this type of technology will allow for automated computer diagnosis without the need for manual intervention, in order to create a smarter, efficient healthcare service."

Related Links:
University of Leicester 


Print article
CIRS -  MIRION
Radcal

Channels

Radiography

view channel
Image: The Definium 656 HD is the company’s most advanced fixed X-ray system yet (Photo courtesy of GE Healthcare)

Next-Gen X-Ray System Brings ‘Personal Assistant’ to Radiology Departments

X-ray imaging often provides the entry point to diagnostic imaging - accounting for 60% of all imaging studies conducted. As a result, X-ray technologists, radiologists and radiology administrators are... Read more

General/Advanced Imaging

view channel
Image: uEXPLORER is the world`s first total-body PET/CT scanner (Photo courtesy of United Imaging Healthcare)

Total-Body PET Imaging Can Assess Immunological Response to COVID-19 Infections

Cytotoxic T cells are key players in the cell-mediated immune response against viral infections. However, 95% of T cells are in tissues rather than in the blood circulation and are therefore difficult... Read more

Imaging IT

view channel
Illustration

Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology

The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.