We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




CT Lung Imaging Combined with Machine Learning Predicts Further COPD Care

By MedImaging International staff writers
Posted on 24 Jun 2022
Print article
Image: Quantitative CT lung imaging and ML improves prediction of ED visits and hospitalizations in COPD (Photo courtesy of Pexels)
Image: Quantitative CT lung imaging and ML improves prediction of ED visits and hospitalizations in COPD (Photo courtesy of Pexels)

Healthcare utilization in chronic obstructive pulmonary disease (COPD) patients is a growing concern. Patients with COPD are more likely to utilize healthcare services, have higher rates of hospitalizations and hospital readmissions, and higher rates of mortality. Hence, predicting increased risk of future healthcare utilization in COPD patients is important for improving patient management. Now, a new study has found that healthcare utilization could potentially be predicted in mild COPD patients using computed tomography (CT) lung imaging and machine learning.

The study by researchers at the Toronto Metropolitan University (Toronto, ON, Canada) aimed to determine the importance of CT lung imaging measurements relative to other demographic and clinical measurements for predicting future health services use with machine learning in COPD. In the retrospective study, the researchers evaluated lung function measurements and chest CT images of 527 COPD participants from 2010 to 2017. Up to two follow-up visits (1.5- and 3-year follow-up) were performed and participants were asked for details related to healthcare utilization. Healthcare utilization was defined as any COPD hospitalization or emergency room visit due to respiratory problems in the 12 months prior to the follow-up visits.

The researchers found that out of the 527 COPD participants evaluated, 179 (35%) used healthcare services at follow-up. There were no significant differences between the participants with or without healthcare utilization at follow-up for age, sex, BMI or pack-years. The accuracy for predicting subsequent healthcare utilization was 80% when all measurements were considered, 76% for CT measurements alone and 65% for demographic and lung function measurements alone. Based on these findings, the researchers concluded that a combination of CT lung imaging and conventional measurements leads to greater prediction accuracy of subsequent health services use than conventional measurements alone, and may provide needed prognostic information for patients suffering from COPD.

Related Links:
Toronto Metropolitan University 

X-ray Diagnostic System
FDX Visionary-A
New
Breast Localization System
MAMMOREP LOOP
Silver Member
X-Ray QA Meter
T3 AD Pro
New
Ultrasound Needle Guidance System
SonoSite L25

Print article

Channels

Radiography

view channel
Image: The new machine algorithm can identify cardiovascular risk at the click of a button (Photo courtesy of Adobe Stock)

Machine Learning Algorithm Identifies Cardiovascular Risk from Routine Bone Density Scans

A new study published in the Journal of Bone and Mineral Research reveals that an automated machine learning program can predict the risk of cardiovascular events and falls or fractures by analyzing bone... Read more

Nuclear Medicine

view channel
Image: The prostate cancer imaging study aims to reduce the need for biopsies (Photo courtesy of Shutterstock)

New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer

Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.