We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Cutting-Edge Imaging Pinpoints Where and When Hemorrhagic Stroke Has Occurred

By MedImaging International staff writers
Posted on 13 Jun 2022
Print article
Image: Team member Nicole Sylvain, with USask`s College of Medicine, in a lab at the CLS (Photo courtesy of CLS)
Image: Team member Nicole Sylvain, with USask`s College of Medicine, in a lab at the CLS (Photo courtesy of CLS)

Hemorrhagic stroke, where a weakened vessel in the brain ruptures, can lead to permanent disability or death. Across the globe, over 15 million people are coping with its effects. Time is of the essence when it comes to stroke; the sooner doctors can start treatment, the better the odds they can limit damage. Now, a new study has moved us one step closer to identifying when the bleeding associated with a hemorrhagic stroke starts - critical information for improving patient outcomes.

Using the Mid-IR beamline at the Canadian Light Source (CLS) at the University of Saskatchewan (USask, Saskatoon, Canada), the research team examined brain tissue samples with a special technique called Fourier-transform infrared imaging. The novel approach enabled the researchers to identify changes in the brain specific to hemorrhagic stroke. According to the researchers, the combination of the beamline and infrared imaging made it easy to detect markers of brain damage caused by hemorrhagic stroke.

With synchrotron technology, the team could see where a bleed originated and the extent of oxidative damage it caused – something impossible to do with a microscope or traditional approaches to imaging. Armed with this new approach, and a better understanding of what they are looking for, the researchers will now go back through their extensive “library” of stroke tissue samples to gain a clearer picture of the speed at which oxidative damage begins to ramp up. The team’s findings could eventually enable doctors to use clinical imaging – such as MRI or CT scans – to pinpoint where, and how long ago, a hemorrhagic stroke occurred in the brain. Knowing when bleeding has started can provide clinicians with a clearer picture of the time window they have to act.

“In a sense, this is giving us ‘superhuman vision’ to look at these brains and map out what’s happening metabolically,” said Dr. Jake Pushie, a member of the research team at USask’s College of Medicine.

“Being able to understand what is going on biologically, when we see any kinds of changes in the clinical images, could help doctors provide better care when it comes to minimizing the tissue damage associated with stroke,” added Miranda Messmer, another member of the research team.

Related Links:
University of Saskatchewan


Print article
CIRS -  MIRION
Radcal

Channels

Radiography

view channel
Image: Spinal fractures in the elderly are preventable with simple X-rays (Photo courtesy of Pexels)

Simple X-Ray Method Can Diagnose Vertebral Compression and Prevent Spinal Fractures

Vertebral compression means that the spine is compressed, causing a fracture in one of the vertebrae. Vertebral compression fractures (VCFs) occur easily in people with osteoporosis and are very common... Read more

Imaging IT

view channel
Illustration

Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology

The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read more

Industry News

view channel
Image: RSNA`s annual meeting is the world`s largest medical imaging conference (Photo courtesy of RSNA)

RSNA 2022 Sees Rise in Abstract Submissions Ahead of Annual Meeting

The Radiological Society of North America (RSNA, Oak Brook, IL, USA) has announced that nearly 10,400 scientific and educational abstracts have been submitted for the Society's 108th Scientific Assembly... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.