We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
CIRS

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Smart Stent for Hemodynamics Monitoring Could Eliminate Need for Angiogram Imaging

By MedImaging International staff writers
Posted on 13 May 2022
Print article
Image: Smart stent can continuously monitor arterial pressure, pulse, and flow (Photo courtesy of Georgia Institute of Technology)
Image: Smart stent can continuously monitor arterial pressure, pulse, and flow (Photo courtesy of Georgia Institute of Technology)

Vascular diseases are the leading killers worldwide, accounting for nearly a third of all human deaths on the planet. Continuous monitoring of hemodynamics – blood flow through the vascular system – can improve treatments and patient outcomes. But deadly conditions like hypertension and atherosclerosis occur in long and twisting vascular system with arteries of varying diameter and curvature, and existing clinical devices are limited by their bulk, rigidity, and utility. A team of researchers is now trying to improve the odds for patients with the development of an implantable soft electronic monitoring system.

Researchers at the Georgia Institute of Technology (Atlanta, GA, USA) have developed a new device consisting of a smart stent and printed soft sensors that is capable of wireless real-time monitoring of hemodynamics without batteries or circuits. When the device is installed in a patient with atherosclerosis, in addition to expanding and preventing the artery from narrowing, like a traditional stent, restoring normal blood flow, it will also provide a constant flow of data. The system seeks to circumvent the need for an angiogram or other imaging requirements that are the current standard way to monitor hemodynamics. Such methods can also be expensive and in rare instances, particularly with patients also struggling with diabetes, the dyes and radiation used in angiogram imaging can cause cancer.

The wireless smart stent platform, integrated with soft sensors, is operated by inductive coupling to offer wireless real-time monitoring that can detect a wide range of vascular conditions. Inductive coupling uses magnetic fields for wireless energy transfer. It is similar to a wireless charger used for the phone, smartwatch, or other devices – they are gaining energy from the magnetic field created by the charger. The researchers have tested their wireless implantable system on animal models although there is still plenty of work to do.

“This electronic system is designed to wirelessly deliver hemodynamic data, including arterial pressure, pulse, and flow, to an external data acquisition system, and it is super small and thin, which is why we can use a catheter to deliver it, anywhere inside the body,” said Woon-Hong Yeo, a researcher at Georgia Institute of Technology.

“Basically, you can put this sensor system anywhere inside the body,” added Yeo. “The other thing about this technology platform is, in addition to being an implantable sensor system, it can be used as a wearable system. Think about a smartwatch and how much of its bulk is taken up by circuits or batteries. If you remove all of that, you have a device that is thinner than a typical Band-Aid, an almost invisible health monitor that you can wear anywhere.”

Related Links:
Georgia Institute of Technology 


Print article
Sun Nuclear
Radcal

Channels

Radiography

view channel
Image: CE-marked and FDA-cleared ExacTrac Dynamic enables the delivery of precision radiotherapy (Photo courtesy of Brainlab)

Next-Gen Technology Enables Precision Radiotherapy with “On-The-Fly” X-Ray Confirmation

Deep Inspiration Breath Hold (DIBH) is a well-established technique and standard of care in treating breast cancer with radiation therapy. When a patient takes a deep breath, the distance between the heart... Read more

MRI

view channel
Image: fMRI can be used as non-invasive method for predicting complications in chronic liver disease (Photo courtesy of Pexels)

Functional MRI (fMRI) Offers Non-Invasive Method for Risk Assessment in Liver Disease

In a recent study, a team of scientists has shown that functional magnetic resonance imaging (fMRI) can be used as a non-invasive method for predicting complications in chronic liver disease.... Read more

Ultrasound

view channel
Image: Resona I9 ultrasound system features innovative design elements (Photo courtesy of Mindray)

Mindray’s Latest Resona I9 Ultrasound System Provides Innovation-Driven Experience

Mindray (Shenzhen, China) has launched a new ultrasound system which provides an entirely new experience, driven by innovation to address today’s clinical challenges. Mindray’s latest Resona I9 ultrasound... Read more

Imaging IT

view channel
Illustration

Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology

The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read more

Industry News

view channel
Image: Global diagnostic imaging market is driven by technological advancements (Photo courtesy of Pexels)

Global Diagnostic Imaging Market to Surpass USD 33 Billion by 2026

The global diagnostic imaging market is one of the most critical segments of the healthcare sector. Medical imaging helps in early detection and diagnosis of diseases at a stage when they can be easily... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.