We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Smart Stent for Hemodynamics Monitoring Could Eliminate Need for Angiogram Imaging

By MedImaging International staff writers
Posted on 13 May 2022
Print article
Image: Smart stent can continuously monitor arterial pressure, pulse, and flow (Photo courtesy of Georgia Institute of Technology)
Image: Smart stent can continuously monitor arterial pressure, pulse, and flow (Photo courtesy of Georgia Institute of Technology)

Vascular diseases are the leading killers worldwide, accounting for nearly a third of all human deaths on the planet. Continuous monitoring of hemodynamics – blood flow through the vascular system – can improve treatments and patient outcomes. But deadly conditions like hypertension and atherosclerosis occur in long and twisting vascular system with arteries of varying diameter and curvature, and existing clinical devices are limited by their bulk, rigidity, and utility. A team of researchers is now trying to improve the odds for patients with the development of an implantable soft electronic monitoring system.

Researchers at the Georgia Institute of Technology (Atlanta, GA, USA) have developed a new device consisting of a smart stent and printed soft sensors that is capable of wireless real-time monitoring of hemodynamics without batteries or circuits. When the device is installed in a patient with atherosclerosis, in addition to expanding and preventing the artery from narrowing, like a traditional stent, restoring normal blood flow, it will also provide a constant flow of data. The system seeks to circumvent the need for an angiogram or other imaging requirements that are the current standard way to monitor hemodynamics. Such methods can also be expensive and in rare instances, particularly with patients also struggling with diabetes, the dyes and radiation used in angiogram imaging can cause cancer.

The wireless smart stent platform, integrated with soft sensors, is operated by inductive coupling to offer wireless real-time monitoring that can detect a wide range of vascular conditions. Inductive coupling uses magnetic fields for wireless energy transfer. It is similar to a wireless charger used for the phone, smartwatch, or other devices – they are gaining energy from the magnetic field created by the charger. The researchers have tested their wireless implantable system on animal models although there is still plenty of work to do.

“This electronic system is designed to wirelessly deliver hemodynamic data, including arterial pressure, pulse, and flow, to an external data acquisition system, and it is super small and thin, which is why we can use a catheter to deliver it, anywhere inside the body,” said Woon-Hong Yeo, a researcher at Georgia Institute of Technology.

“Basically, you can put this sensor system anywhere inside the body,” added Yeo. “The other thing about this technology platform is, in addition to being an implantable sensor system, it can be used as a wearable system. Think about a smartwatch and how much of its bulk is taken up by circuits or batteries. If you remove all of that, you have a device that is thinner than a typical Band-Aid, an almost invisible health monitor that you can wear anywhere.”

Related Links:
Georgia Institute of Technology 


Print article
Sun Nuclear -    Mirion
CIRS -  MIRION

Channels

Radiography

view channel
Image: The FDA has cleared the CSA system with Dynamic Digital Radiography (Photo courtesy of 20/20 Imaging)

Advanced Digital X-Ray System Allows Clinicians to Capture and Visualize Anatomy in Motion

Dynamic Digital Radiography (DDR) is a revolutionary X-ray technology that enables the visualization of anatomy in motion, so clinicians can interpret the dynamic interaction of anatomical structures,... Read more

MRI

view channel
Image: MRI identifies patients with sarcoidosis at risk for bad cardiac outcomes (Photo courtesy of University of Minnesota Medical School)

MRI Identifies Patients at Higher Risk for Cardiac Sarcoidosis-Related Adverse Outcomes

Cardiac sarcoidosis is a rare inflammatory heart disease that can result in rhythm disturbances and heart failure. Researchers have now found that patients with certain features on magnetic resonance imaging... Read more

Ultrasound

view channel
Image: EG-740UT ultrasound endoscope combined with ARIETTA 850 provides outstanding ultrasound image quality (Photo courtesy of FUJIFILM)

Next-Gen Ultrasound Endoscope Enables Complex Diagnostic and Therapeutic Procedures

Endoscopic ultrasound is a specialist procedure performed utilizing an endoscope equipped with an ultrasonic transducer which emits and receives ultrasonic waves within the gastrointestinal tract, such... Read more

General/Advanced Imaging

view channel
Image: New guidance standardizes care for patients presenting with acute chest pain in the ED (Photo courtesy of Pexels)

New Guidance Recommends Coronary CTA as First-Line Test when Treating Acute Chest Pain in ED

Diagnosis and triage of emergency department (ED) patients with suspected acute coronary syndrome (ACS) consume a large and increasing amount of healthcare resources. ED overcrowding is associated with... Read more

Imaging IT

view channel
Illustration

Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology

The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.