We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
CIRS

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

AI Tool Accurately and Consistently Classifies Breast Density on Mammograms

By MedImaging International staff writers
Posted on 18 Mar 2022
Print article
Image: Selection of mammographic mediolateral oblique views of breasts with different breast density (Photo courtesy of RSNA)
Image: Selection of mammographic mediolateral oblique views of breasts with different breast density (Photo courtesy of RSNA)

Breast density reflects the amount of fibroglandular tissue in the breast commonly seen on mammograms. High breast density is an independent breast cancer risk factor, and its masking effect of underlying lesions. Now, an artificial intelligence (AI) tool can accurately and consistently classify breast density on mammograms.

In clinical practice, breast density is visually assessed on two-view mammograms, most commonly with the American College of Radiology Breast Imaging-Reporting and Data System (BI-RADS) four-category scale, ranging from Category A for almost entirely fatty breasts to Category D for extremely dense. The system has limitations, as visual classification is prone to inter- and intra-observer variability. To overcome this variability, researchers from the Centro Diagnostico Italiano (Milan, Italy) developed software for breast density classification based on deep learning with convolutional neural networks, a sophisticated type of AI able to discern subtle patterns in images beyond the capabilities of the human eye.

The researchers trained the software, known as TRACE4BDensity, under the supervision of seven experienced radiologists who independently visually assessed 760 mammographic images. External validation of the tool was performed by the three radiologists closest to the consensus on a dataset of 384 mammographic images obtained from a different center. TRACE4BDensity showed 89% accuracy in distinguishing between low density (BI-RADS categories A and B) and high density (BI-RADS categories C and D) breast tissue, with an agreement of 90% between the tool and the three readers. All disagreements were in adjacent BI-RADS categories. According to the researchers, such a tool would be particularly valuable, as breast cancer screening becomes more personalized, with density assessment accounting for one important factor in risk stratification. The researchers plan additional studies to better understand the full capabilities of the software.

“The particular value of this tool is the possibility to overcome the suboptimal reproducibility of visual human density classification that limits its practical usability,” said study co-author Sergio Papa, MD, from the Centro Diagnostico Italiano in Milan. “To have a robust tool that proposes the density assignment in a standardized fashion may help a lot in decision making.

"A tool such as TRACE4BDensity can help us advise women with dense breasts to have, after a negative mammogram, supplemental screening with ultrasound, MRI or contrast-enhanced mammography,” said study co-author Francesco Sardanelli, MD, from the Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Donato.

Related Links:
Centro Diagnostico Italiano 


Print article
Sun Nuclear
Radcal

Channels

Radiography

view channel
Image: CE-marked and FDA-cleared ExacTrac Dynamic enables the delivery of precision radiotherapy (Photo courtesy of Brainlab)

Next-Gen Technology Enables Precision Radiotherapy with “On-The-Fly” X-Ray Confirmation

Deep Inspiration Breath Hold (DIBH) is a well-established technique and standard of care in treating breast cancer with radiation therapy. When a patient takes a deep breath, the distance between the heart... Read more

MRI

view channel
Image: fMRI can be used as non-invasive method for predicting complications in chronic liver disease (Photo courtesy of Pexels)

Functional MRI (fMRI) Offers Non-Invasive Method for Risk Assessment in Liver Disease

In a recent study, a team of scientists has shown that functional magnetic resonance imaging (fMRI) can be used as a non-invasive method for predicting complications in chronic liver disease.... Read more

Ultrasound

view channel
Image: Resona I9 ultrasound system features innovative design elements (Photo courtesy of Mindray)

Mindray’s Latest Resona I9 Ultrasound System Provides Innovation-Driven Experience

Mindray (Shenzhen, China) has launched a new ultrasound system which provides an entirely new experience, driven by innovation to address today’s clinical challenges. Mindray’s latest Resona I9 ultrasound... Read more

Imaging IT

view channel
Illustration

Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology

The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read more

Industry News

view channel
Image: Global diagnostic imaging market is driven by technological advancements (Photo courtesy of Pexels)

Global Diagnostic Imaging Market to Surpass USD 33 Billion by 2026

The global diagnostic imaging market is one of the most critical segments of the healthcare sector. Medical imaging helps in early detection and diagnosis of diseases at a stage when they can be easily... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.