We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

AI Tool Accurately and Consistently Classifies Breast Density on Mammograms

By MedImaging International staff writers
Posted on 18 Mar 2022
Print article
Image: Selection of mammographic mediolateral oblique views of breasts with different breast density (Photo courtesy of RSNA)
Image: Selection of mammographic mediolateral oblique views of breasts with different breast density (Photo courtesy of RSNA)

Breast density reflects the amount of fibroglandular tissue in the breast commonly seen on mammograms. High breast density is an independent breast cancer risk factor, and its masking effect of underlying lesions. Now, an artificial intelligence (AI) tool can accurately and consistently classify breast density on mammograms.

In clinical practice, breast density is visually assessed on two-view mammograms, most commonly with the American College of Radiology Breast Imaging-Reporting and Data System (BI-RADS) four-category scale, ranging from Category A for almost entirely fatty breasts to Category D for extremely dense. The system has limitations, as visual classification is prone to inter- and intra-observer variability. To overcome this variability, researchers from the Centro Diagnostico Italiano (Milan, Italy) developed software for breast density classification based on deep learning with convolutional neural networks, a sophisticated type of AI able to discern subtle patterns in images beyond the capabilities of the human eye.

The researchers trained the software, known as TRACE4BDensity, under the supervision of seven experienced radiologists who independently visually assessed 760 mammographic images. External validation of the tool was performed by the three radiologists closest to the consensus on a dataset of 384 mammographic images obtained from a different center. TRACE4BDensity showed 89% accuracy in distinguishing between low density (BI-RADS categories A and B) and high density (BI-RADS categories C and D) breast tissue, with an agreement of 90% between the tool and the three readers. All disagreements were in adjacent BI-RADS categories. According to the researchers, such a tool would be particularly valuable, as breast cancer screening becomes more personalized, with density assessment accounting for one important factor in risk stratification. The researchers plan additional studies to better understand the full capabilities of the software.

“The particular value of this tool is the possibility to overcome the suboptimal reproducibility of visual human density classification that limits its practical usability,” said study co-author Sergio Papa, MD, from the Centro Diagnostico Italiano in Milan. “To have a robust tool that proposes the density assignment in a standardized fashion may help a lot in decision making.

"A tool such as TRACE4BDensity can help us advise women with dense breasts to have, after a negative mammogram, supplemental screening with ultrasound, MRI or contrast-enhanced mammography,” said study co-author Francesco Sardanelli, MD, from the Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Donato.

Related Links:
Centro Diagnostico Italiano 

Gold Supplier
SBRT Phantom with Removable Spine
E2E SBRT Phantom with Removable Spine Model 036S-CVXX-xx
New
High Frequency X-Ray Generator
SHFR
New
Neuro-OR MRI System
Nexaris MR
New
Ceiling-Mounted Digital X-Ray System
DigitalDiagnost C50

Print article

Channels

MRI

view channel
Image: New scan measures tumor oxygen levels in real-time to help guide treatment (Photo courtesy of ICR)

Oxygen-Enhanced MRI Technology Allows Cancer Doctors to See Inside Tumors

Since the 1950s, researchers have been aware of the difficulty in effectively treating tumors deprived of oxygen, a problem that is further exacerbated when treating them with radiotherapy.... Read more

Ultrasound

view channel
Image: New focused ultrasound is effective for treating Parkinson’s, movement disorders (Photo courtesy of Pexels)

New Focused Ultrasound Treatment Proves Effective for Parkinson’s Disease Patients

Parkinson's disease is a neurological condition characterized by the loss of dopamine neurons within the brain. While medications such as levodopa can be effective in managing this condition, some patients... Read more

Nuclear Medicine

view channel
Image: Tracking radiation treatment in real time promises safer, more effective cancer therapy (Photo courtesy of Pexels)

Real-Time 3D Imaging Provides First-of-Its-Kind View of X-Rays Hitting Inside Body During Radiation Therapy

Radiation is used in treatment for hundreds of thousands of cancer patients each year, bombarding an area of the body with high energy waves and particles, usually X-rays. The radiation can kill cancer... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.