We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Thales AVS France

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

AI Tool Combines Lung Screening CT with Clinical Data to Predict Lung Cancer without Radiologist Assistance

By MedImaging International staff writers
Posted on 28 Oct 2021
Print article
Illustration
Illustration

A new artificial intelligence (AI)-based model that combines lung screening computed tomography (CT) information with clinical data has been shown to better predict lung cancer without the need for manual reading.

The deep learning tool built by scientists at the Vanderbilt University (Nashville, TN, USA) integrates CT features such as nodule size and risk factors including age, pack-years smoked, cancer history, among others. The scientists developed and tested the co-learning model on exams of more than 23,000 patients and found that it outperformed risk models utilizing clinical or imaging data alone, including the popular Brock model.

The scientists developed the deep learning tool by applying a five-fold cross-validation approach to data of 23,505 patients from the National Lung Screening Trial. The team used screening data from close to 150 patients in an in-house program for external testing. The scientists found that the deep learning tool notched an area under the receiver operating characteristic curve score of 0.88, which was higher than published models dependent completely on imaging data (0.86) and clinical risk factors (0.69).

More importantly, the deep learning tool automatically pulls high-risk regions from CT exams without the need for any effort by the radiologist. However, gathering clinical data does involve manual effort from radiologists and physicians. The scientists believe that their co-learning approach could be particularly beneficial as more patients start to qualify for screening exams and the insights from the tool could find low-risk individuals to be actually high-risk.

“Risk estimation among lung screening participants will become even more important with the impending expansion of screening guidelines to include those patients who are considered lower risk only based on age and history of tobacco use,” stated Riqiang Gao, a PhD student in computer science at Vanderbilt University. “The role of [the] radiologist is still irreplaceable in terms of looking for and reporting clinically significant findings (emphysema, pulmonary fibrosis, atelectasis, etc.).”

Related Links:
Vanderbilt University 


Print article
Sun Nuclear
Radcal

Channels

Imaging IT

view channel
Illustration

Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology

The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read more

Industry News

view channel
Image: GE Healthcare to be Spun Off in 2023 to Create Pure-Play Company at Center of Precision Health (Photo courtesy of GE Healthcare)

GE Healthcare to be Spun Off in 2023 to Create Pure-Play Company at Center of Precision Health

General Electric (GE; Boston, MA, USA) plans to pursue a tax-free spin-off of GE Healthcare, creating a pure-play company at the center of precision health in early 2023. The spin-off of GE Healthcare... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.