We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




IR Spectroscopic Imaging Aids Diagnosis of Colon Cancer

By MedImaging International staff writers
Posted on 02 Sep 2019
Print article
Image: A new study asserts that FTIR chemical imaging can help identify colon cancer more accurately (Photo courtesy of ICL).
Image: A new study asserts that FTIR chemical imaging can help identify colon cancer more accurately (Photo courtesy of ICL).
Fourier-transform infrared (FTIR) spectroscopic imaging can produce 'chemical photographs' of biopsy tissue samples ranging from healthy to cancerous, according to a new study.

Researchers at Imperial College London (Imperial; United Kingdom) and the University of British Columbia (UBC; Vancouver, Canada) undertook FTIR spectroscopic imaging of colon biopsy tissues, combined it with a random forest machine learning (ML) approach in order to classify different stages of colon cancer malignancy. The combination of the optical and ML computational approaches helped eliminate scattering background during the measurements. The results demonstrated that C–H stretching and amide I bands are of little to no significance for the classification of colon malignancy.

The best prediction outcome was found when classification was carried out in the fingerprint region of the mid-infrared spectrum (7-10 micrometers; 1500- 1000 cm−1), which excludes the contribution of amide I and II bands. Overall prediction accuracy was higher than 90%, with dysplastic and hyperplastic tissues well distinguished. The study also showed that computational correction performed better than optical correction, and that disease states can be distinguished effectively even without elimination of scattering effects. The study was published on August 16, 2019, in Analytical and Bioanalytical Chemistry.

“There is urgency in developing new techniques which can identify the early stages of cancer in a way that goes beyond the current histopathology approaches in order to increase survival rates. Coupling spectroscopic imaging with advanced ML approaches aid early detection and understanding of cancer,” said senior author Professor Sergei Kazarian, PhD, of the ICL department of chemical engineering. “There is an excitement of having an enhanced accuracy that promises advances in the early cancer detection and differentiation of disease stages.”

FTIR imaging involves shining an infrared beam at a sample and measuring how much of that light is absorbed at different frequencies, which is used to produce a visual reference of the sample's chemical composition. And although the study was restricted to colon cancer, the researchers have already created models, which have the potential to be applied to other difficult to diagnose cancers such as esophageal cancer, and even non-cancerous anomalies.

Related Links:
Imperial College London
University of British Columbia

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound Table
Powered Ultrasound Table-Flat Top
Silver Member
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers
New
X-Ray Detector
FDR-D-EVO III

Print article
Radcal

Channels

MRI

view channel
Image: Exablate Prime features an enhanced user interface and enhancements to optimize productivity (Photo courtesy of Insightec)

Next Generation MR-Guided Focused Ultrasound Ushers In Future of Incisionless Neurosurgery

Essential tremor, often called familial, idiopathic, or benign tremor, leads to uncontrollable shaking that significantly affects a person’s life. When traditional medications do not alleviate symptoms,... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.