We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
IBA-Radcal

Download Mobile App




X-Ray Techniques Probe the Clostridium Difficile Surface Layer

By MedImaging International staff writers
Posted on 11 Mar 2009
A team of molecular microbiologists has begun to shed light on the structural mechanism used by the pathogenic bacterium Clostridium difficile to adhere to and infect human enteric tissue.

Investigators at Imperial College (London, United Kingdom) used X-ray crystallography techniques to produce both high- and low-resolution images of the C. difficile surface layer (S-layer). The S-layer contains a high-molecular-weight S-layer protein (HMW SLP) and its low-molecular-weight partner protein (LMW SLP).

Results published in the March 1, 2009, issue of the journal Molecular Microbiology revealed that the two types of protein formed a tightly associated noncovalent complex, the H/L complex. The 2.4-angstrom X-ray crystal structure of a shortened derivative of the LMW SLP revealed two domains. Domain 1 had a two-layer sandwich architecture while domain 2, predicted to orientate towards the external environment, contained a novel fold.

Small-angle X-ray scattering analysis of the H/L complex showed an elongated molecule, with the two SLPs arranged "end-to-end" interacting with each other through a small contact area. The way the LMW SLPs - which showed high sequence diversity - were aligned revealed a core of conserved residues. This type of structure could reflect functional conservation, while allowing for immune evasion through the sequence variation.

Dr. Neil Fairweather, professor of cell and molecular biology at Imperial College said, "This is the first time anyone has gained detailed information about the molecular structure of [the] C. difficile protective 'jacket,' because analyzing the two protein components is painstakingly difficult work. We are confident that continuing this work to better understand the formation of this protective coat and its exact function will reveal new targets for effective drugs to beat this dangerous pathogen, and could even lead to an effective vaccine."

Related Links:
Imperial College


Adjustable Mobile Barrier
M-458
Post-Processing Imaging System
DynaCAD Prostate
Medical Radiographic X-Ray Machine
TR30N HF
X-Ray Illuminator
X-Ray Viewbox Illuminators

Channels

Nuclear Medicine

view channel
Image: CXCR4-targeted PET imaging reveals hidden inflammatory activity (Diekmann, J. et al., J Nucl Med (2025). DOI: 10.2967/jnumed.125.270807)

PET Imaging of Inflammation Predicts Recovery and Guides Therapy After Heart Attack

Acute myocardial infarction can trigger lasting heart damage, yet clinicians still lack reliable tools to identify which patients will regain function and which may develop heart failure.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.