We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




CT Lung Imaging Combined with Machine Learning Predicts Further COPD Care

By MedImaging International staff writers
Posted on 24 Jun 2022
Image: Quantitative CT lung imaging and ML improves prediction of ED visits and hospitalizations in COPD (Photo courtesy of Pexels)
Image: Quantitative CT lung imaging and ML improves prediction of ED visits and hospitalizations in COPD (Photo courtesy of Pexels)

Healthcare utilization in chronic obstructive pulmonary disease (COPD) patients is a growing concern. Patients with COPD are more likely to utilize healthcare services, have higher rates of hospitalizations and hospital readmissions, and higher rates of mortality. Hence, predicting increased risk of future healthcare utilization in COPD patients is important for improving patient management. Now, a new study has found that healthcare utilization could potentially be predicted in mild COPD patients using computed tomography (CT) lung imaging and machine learning.

The study by researchers at the Toronto Metropolitan University (Toronto, ON, Canada) aimed to determine the importance of CT lung imaging measurements relative to other demographic and clinical measurements for predicting future health services use with machine learning in COPD. In the retrospective study, the researchers evaluated lung function measurements and chest CT images of 527 COPD participants from 2010 to 2017. Up to two follow-up visits (1.5- and 3-year follow-up) were performed and participants were asked for details related to healthcare utilization. Healthcare utilization was defined as any COPD hospitalization or emergency room visit due to respiratory problems in the 12 months prior to the follow-up visits.

The researchers found that out of the 527 COPD participants evaluated, 179 (35%) used healthcare services at follow-up. There were no significant differences between the participants with or without healthcare utilization at follow-up for age, sex, BMI or pack-years. The accuracy for predicting subsequent healthcare utilization was 80% when all measurements were considered, 76% for CT measurements alone and 65% for demographic and lung function measurements alone. Based on these findings, the researchers concluded that a combination of CT lung imaging and conventional measurements leads to greater prediction accuracy of subsequent health services use than conventional measurements alone, and may provide needed prognostic information for patients suffering from COPD.

Related Links:
Toronto Metropolitan University 

Ultrasound Needle Guidance System
SonoSite L25
Digital Radiographic System
OMNERA 300M
Multi-Use Ultrasound Table
Clinton
Ultrasound Table
Women’s Ultrasound EA Table

Channels

Nuclear Medicine

view channel
Image: Perovskite crystal boules are grown in carefully controlled conditions from the melt (Photo courtesy of Mercouri Kanatzidis/Northwestern University)

New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis

Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.