We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
IBA-Radcal

Download Mobile App




AI Tool Accurately Predicts Stroke Outcomes After Arterial Clot Removal Using CTA Scans

By MedImaging International staff writers
Posted on 05 Sep 2024
Image: The AI tool predicts stroke outcomes after arterial clot removal with 78% accuracy (Photo courtesy of Adobe Stock)
Image: The AI tool predicts stroke outcomes after arterial clot removal with 78% accuracy (Photo courtesy of Adobe Stock)

In current stroke treatment protocols, advanced imaging techniques, particularly Computed Tomography Angiography (CTA), play a vital role in determining the management strategy for Large Vessel Occlusion (LVO). CTA is critical not only for assessing patient eligibility for treatment but also for evaluating the arterial collateral supply and predicting the prognosis of functional stroke outcomes. It is known to be more sensitive than non-contrast Computed Tomography (CT) in identifying early signs of infarction. Additionally, recent research has demonstrated CTA's utility in long-term prognostication. The advent of artificial intelligence (AI) has introduced innovative models capable of predicting long-term outcomes based on initial stroke imaging. These models extract prognostic data directly from CTA scans taken upon admission, providing forecasts of patient outcomes. Now, a novel deep learning model can accurately predict post-surgical outcomes for patients with LVO stroke based on their initial CTA scans.

A research team led by Yale School of Medicine (New Haven, CT, USA) utilized patient data from thrombectomies performed between 2014 and 2020 to train three distinct models using admission CTA scans. These models also considered variables such as time to surgery, age, sex, and NIH stroke scale scores. This research culminated in a fully automated deep learning model that can accurately determine stroke outcomes from admission imaging and various treatment scenarios, achieving a 78% accuracy rate in independent validation. According to the researchers, this tool facilitates rapid and accurate decision-making by establishing a 'treatment trigger' that could initiate the treatment sequence following surgery. The findings from this study were published in the journal Frontiers in Artificial Intelligence.

"The deep learning model developed by our research team is the first step toward intelligent machinization of stroke neuroimaging protocol," said Sam Payabvash, M.D., Associate Professor of Radiology and Biomedical Imaging and senior author of the study. "It’s worth noting that the model can solely rely on CT angiography scans of the brain, which are invariably present at the time of stroke diagnosis. Therefore, our model based on imaging information can provide rapid, objective predictions regardless of local expertise and other variabilities, guiding treatment in resource challenged communities.”

Related Links:
Yale School of Medicine

Digital Intelligent Ferromagnetic Detector
Digital Ferromagnetic Detector
Ultrasonic Pocket Doppler
SD1
Mammography System (Analog)
MAM VENUS
X-Ray Illuminator
X-Ray Viewbox Illuminators

Channels

Ultrasound

view channel
Image: The super-resolution lymphatic imaging system could diagnose and monitor patients with lymphatic disease (Photo courtesy of Adobe Stock)

Portable Imaging Scanner to Diagnose Lymphatic Disease in Real Time

Lymphatic disorders affect hundreds of millions of people worldwide and are linked to conditions ranging from limb swelling and organ dysfunction to birth defects and cancer-related complications.... Read more

Nuclear Medicine

view channel
Image: This artistic representation illustrates how the drug candidate NECT-224 works in the human body (Photo courtesy of HZDR/A. Gruetzner)

Radiopharmaceutical Molecule Marker to Improve Choice of Bladder Cancer Therapies

Targeted cancer therapies only work when tumor cells express the specific molecular structures they are designed to attack. In urothelial carcinoma, a common form of bladder cancer, the cell surface protein... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.