We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Ampronix,  Inc

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
11 Jun 2020 - 13 Jun 2020

AI Chest CT Analysis Distinguishes COVID-19 from Pneumonia

By MedImaging International staff writers
Posted on 31 Mar 2020
Print article
Image: Heatmaps of COVID-19 activation regions (Photo courtesy of Wuhan Huangpi People\'s Hospital)
Image: Heatmaps of COVID-19 activation regions (Photo courtesy of Wuhan Huangpi People\'s Hospital)
An artificial intelligence (AI) deep learning model can accurately detect COVID-19 and differentiate it from community acquired pneumonia (CAP) and other lung diseases, according to a new study.

Researchers at Wuhan Huangpi People's Hospital (China), Shenzhen University Health Science Center (Shenzhen, China), and other institutions conducted a multicenter, retrospective study to develop the COVID-19 detection neural network (COVNet), a fully automatic AI framework that extracts visual features from volumetric chest CT exams for the detection of COVID-19, and differentiates them from CAP and other lung findings. Datasets were collected from six hospitals and diagnostic performance was assessed and evaluated.

In all, the collected dataset consisted of 4,356 volumetric chest CT exams from 3,322 patients (average age 49 years, 55% male). Overall per-exam sensitivity and specificity for detecting COVID-19 in the independent test set was 90% and 96%, respectively. The researchers also showed that the per-exam sensitivity and specificity for detecting CAP was 87% and 92%, respectively. The study was published on March 19, 2020, in Radiology.

“We were able to collect a large number of CT exams from multiple hospitals, which included 1,296 COVID-19 CT exams,” concluded lead author Lin Li, MD, of the Wuhan Huangpi People's Hospital department of radiology. “More importantly, 1,735 CAP and 1,325 non-pneumonia CT exams were also collected as the control groups in this study in order to ensure the detection robustness, considering that certain similar imaging features may be observed in COVID-19 and other types of lung diseases.”

The coronavirus Disease 2019 (COVID-19) outbreak has rapidly spread all over the world. On January 30, 2020, it was declared as a public health emergency of international concern by the World Health Organization (WHO). It is typically confirmed by reverse-transcription polymerase chain reaction (PCR), but CT can detect certain characteristic manifestations in the lung associated with COVID-19, such as bilateral ground-glass, consolidative pulmonary opacities on CT, and a crazy-paving pattern, among others.

Related Links:
Shenzhen University Health Science Center


Print article
Radcal
Clear Image Devices

Channels

Copyright © 2000-2020 Globetech Media. All rights reserved.