Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New AI Algorithm Predicts Which Breast Cancer Patients Can Benefit From Additional Therapy

By MedImaging International staff writers
Posted on 01 Jan 2020
Researchers from the Case Western Reserve University (Cleveland, OH, USA) have developed a new artificial intelligence (AI) algorithm that could help better determine which patients diagnosed with the pre-malignant breast cancer (commonly referred to as stage 0) are likely to progress to invasive breast cancer and might benefit from additional therapy over and above surgery alone.

Stage 0 breast cancer is the most common type and known clinically as ductal carcinoma in situ (DCIS), indicating that the cancer cell growth starts in the milk ducts. More...
Once a lumpectomy of breast tissue reveals this pre-cancerous tumor, most women have surgery to remove the remainder of the affected tissue and some are given radiation therapy as well.

The researchers used a computer program to analyze the spatial architecture, texture and orientation of the individual cells and nuclei from scanned and digitized lumpectomy tissue samples from 62 DCIS patients. They found that both the size and orientation of the tumors characterized as “indeterminate” were actually much closer to those confirmed as low risk for recurrence by an expensive genetic test called Oncotype DX. The researchers then validated the features that distinguished the low and high risk Oncotype groups in being able to predict the likelihood of progression from DCIS to invasive ductal carcinoma in an independent set of 30 patients.

“Current testing places patients in high risk, low risk and indeterminate risk—but then treats those indeterminates with radiation, anyway,” said Anant Madabhushi, the F. Alex Nason Professor II of Biomedical Engineering at the Case School of Engineering. “They err on the side of caution, but we’re saying that it appears that it should go the other way—the middle should be classified with the lower risk. “In short, we’re probably overtreating patients. That goes against prevailing wisdom, but that’s what our analysis is finding.”

Related Links:
Case Western Reserve University


Ultrasound Imaging System
P12 Elite
Wall Fixtures
MRI SERIES
New
Cylindrical Water Scanning System
SunSCAN 3D
Ultrasonic Pocket Doppler
SD1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to MedImaging.net and get access to news and events that shape the world of Radiology.
  • Free digital version edition of Medical Imaging International sent by email on regular basis
  • Free print version of Medical Imaging International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of Medical Imaging International in digital format
  • Free Medical Imaging International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

MRI

view channel
Image: An AI tool has shown tremendous promise for predicting relapse of pediatric brain cancer (Photo courtesy of 123RF)

AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans

Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more

Nuclear Medicine

view channel
Image: In vivo imaging of U-87 MG xenograft model with varying mass doses of 89Zr-labeled KLG-3 or isotype control (Photo courtesy of L Gajecki et al.; doi.org/10.2967/jnumed.124.268762)

Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors

Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.