We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New AI Technology Pinpoints Negative Symptoms in Cancer Patients

By MedImaging International staff writers
Posted on 08 Jan 2019
Print article
Image: A new AI tool can predict the severity of three common symptoms faced by cancer patients (Photo courtesy of SPL).
Image: A new AI tool can predict the severity of three common symptoms faced by cancer patients (Photo courtesy of SPL).
Researchers from the University of Surrey (England, UK) and the University of California {(UCSF) San Francisco, CA, USA} have developed a new artificial intelligence (AI) tool, which can predict symptoms and their severity throughout the course of a cancer patient's treatment.

In what is believed to be the first study of its kind, the researchers created two machine learning models which are both able to accurately predict the severity of three common symptoms faced by cancer patients - depression, anxiety and sleep disturbance. All these three symptoms are associated with severe reduction in the quality of life of cancer patients.

The researchers analyzed the existing data of the symptoms experienced by cancer patients during the course of their computed tomography X-ray treatment. The team used different time periods during this data to test whether the machine learning algorithms were able to accurately predict when and if the symptoms surfaced. The researchers found that the actual reported symptoms were very close to those predicted by the machine-learning methods.

"These exciting results show that there is an opportunity for machine learning techniques to make a real difference in the lives of people living with cancer. They can help clinicians identify high-risk patients, help and support their symptom experience and preemptively plan a way to manage those symptoms and improve quality of life," said Payam Barnaghi, Professor of Machine Intelligence at the University of Surrey.

"I am very excited to see how machine learning and AI can be used to create solutions that have a positive impact on the quality of life and well-being of patients," said Nikos Papachristou, who worked on designing the machine learning algorithms for the project.

Related Links:
University of Surrey
University of California San Francisco

Ultra-Flat DR Detector
meX+1717SCC
X-Ray Illuminator
X-Ray Viewbox Illuminators
Ultrasound Table
Women’s Ultrasound EA Table
New
Biopsy Software
Affirm® Contrast

Print article

Channels

MRI

view channel
Image: An AI tool has shown tremendous promise for predicting relapse of pediatric brain cancer (Photo courtesy of 123RF)

AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans

Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more

Nuclear Medicine

view channel
Image: In vivo imaging of U-87 MG xenograft model with varying mass doses of 89Zr-labeled KLG-3 or isotype control (Photo courtesy of L Gajecki et al.; doi.org/10.2967/jnumed.124.268762)

Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors

Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.