We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Deep Learning-Based System Detects and Classifies Mammogram Masses

By MedImaging International staff writers
Posted on 16 Aug 2018
Print article
Image: Comparison of two example mammograms from DDSM and INbreast (Photo courtesy of ResearchGate).
Image: Comparison of two example mammograms from DDSM and INbreast (Photo courtesy of ResearchGate).
Researchers from the Kyung Hee University (Yongin, South Korea) have developed a fully integrated computer-aided diagnosis (CAD) system that uses deep learning and a deep convolutional neural network (CNN) to detect, segment and classify masses from mammograms. In a new study published by the International Journal of Medical Informatics, the researchers have described the use of their regional deep learning model, You-Only-Look-Once (YOLO), to detect breast mass from entire mammograms. The researchers then went on to use a new deep network model based on a full resolution convolutional network (FrCN), to segment the mass lesions pixel-to-pixel. Finally, a deep CNN was used to recognize the mass and classify it as either benign or malignant.

The researchers used the publicly available and annotated INbreast database to evaluate the integrated CAD system’s accuracy in detection, segmentation, and classification. According to the researchers, the evaluation results of the proposed CAD system via four-fold cross-validation tests showed a mass detection accuracy of 98.96%, Matthews correlation coefficient (MCC) of 97.62%, and F1-score of 99.24% with the INbreast dataset. The mass segmentation results via FrCN demonstrated an overall accuracy of 92.97%, MCC of 85.93%, and Dice (F1-score) of 92.69% and Jaccard similarity coefficient metrics of 86.37%, respectively. The detected and segmented masses classified via CNN achieved an overall accuracy of 95.64%, AUC of 94.78%, MCC of 89.91%, and F1-score of 96.84%, respectively.

The researchers concluded that that the CAD system outperformed the latest conventional deep learning methodologies and will assist radiologists in all the stages of detection, segmentation, and classification.

Related Links:
Kyung Hee University
New
Cylindrical Water Scanning System
SunSCAN 3D
Portable X-ray Unit
AJEX140H
New
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
New
MRI Infusion Workstation
BeneFusion MRI Station

Print article

Channels

MRI

view channel
Image: An AI tool has shown tremendous promise for predicting relapse of pediatric brain cancer (Photo courtesy of 123RF)

AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans

Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more

Nuclear Medicine

view channel
Image: In vivo imaging of U-87 MG xenograft model with varying mass doses of 89Zr-labeled KLG-3 or isotype control (Photo courtesy of L Gajecki et al.; doi.org/10.2967/jnumed.124.268762)

Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors

Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.