We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Ultrasound Wireless Charging To Power Deep Implantable Biomedical Devices

By MedImaging International staff writers
Posted on 27 May 2024
Print article
Image: The wireless power transfer system consists of an ultrasound transmitter outside the body (Photo courtesy of DGIST)
Image: The wireless power transfer system consists of an ultrasound transmitter outside the body (Photo courtesy of DGIST)

Current wireless charging technologies for implanted biomedical devices like pacemakers and cochlear implants primarily utilize electromagnetic or radio waves. However, these methods often lose considerable power as they travel through tissue, reducing their efficiency for devices implanted deeper within the body. Additionally, they can cause unwanted side effects, such as tissue heating and immune responses. In contrast, ultrasound-based wireless power transfer is emerging as a superior alternative, able to penetrate deeper into tissues with less energy loss and fewer adverse effects. Now, a new study has shown that the shape of the implanted receiver can greatly enhance the effectiveness of power harvesting from an ultrasound beam.

In the study, researchers at the Daegu Gyeongbuk Institute of Science and Technology (DGIST, Seoul, South Korea) explored how variations in the size, shape, and positioning of the piezoelectric receiver could improve ultrasound energy harvesting. They discovered that placing the receiver within the focal area of a focused ultrasound beam markedly boosts the efficiency of the energy transfer. The piezoelectric receiver produced different phases of electrical signals based on its interaction with various parts of the ultrasound beam, with the most efficient energy transfer occurring within the beam’s main lobe, indicating that larger receivers, which interact with more of the ultrasound beam, are not always more effective.

To optimize these findings, the researchers developed an oblong-shaped ultrasound transmitter and receiver. This design allows the transmitter to create a wide main lobe at the focal point, while the receiver, tailored to match the shape of the transmitted beam, maximizes energy output efficiently. The effectiveness of this system was tested both underwater and through 50mm of porcine tissue, demonstrating that the oblong receiver could fully charge a battery through the tissue in just 1.8 hours, a duration that meets the requirements for commercial batteries.

“The combination of a focused beam and a well-matched receiver allows oblong-shaped ultrasound transmitter and receiver to achieve significantly higher energy delivery compared to conventional ultrasound-based wireless power transfer systems,” said DGIST Professor Jin Ho Chang who led the research team. “The combination of a focused beam and a well-matched receiver allows oblong-shaped ultrasound transmitter and receiver to achieve significantly higher energy delivery compared to conventional ultrasound-based wireless power transfer systems.”

Related Links:
DGIST

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Ultrasound Scanner
TBP-5533
Wall Fixtures
MRI SERIES
New
Multi-Use Ultrasound Table
Clinton

Print article
Radcal

Channels

Radiography

view channel
Image: The new X-ray detector produces a high-quality radiograph (Photo courtesy of ACS Central Science 2024, DOI: https://doi.org/10.1021/acscentsci.4c01296)

Highly Sensitive, Foldable Detector to Make X-Rays Safer

X-rays are widely used in diagnostic testing and industrial monitoring, from dental checkups to airport luggage scans. However, these high-energy rays emit ionizing radiation, which can pose risks after... Read more

Nuclear Medicine

view channel
Image: The Pixclara PET imaging agent for glioma could provide patients with greater diagnostic clarity (Photo courtesy of Telix)

New Imaging Agent to Drive Step-Change for Brain Cancer Imaging

Gliomas are highly diffusely infiltrative tumors that impact the surrounding brain tissue. They represent the most prevalent type of central nervous system (CNS) neoplasm originating from glial cells,... Read more

General/Advanced Imaging

view channel
Image: Cleerly offers an AI-enabled CCTA solution for personalized, precise and measurable assessment of plaque, stenosis and ischemia (Photo courtesy of Cleerly)

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Groundbreaking research has shown that a non-invasive, artificial intelligence (AI)-based analysis of cardiac computed tomography (CT) can predict severe heart-related events in patients exhibiting symptoms... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.