We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Novel Ultrasound Imaging Technique Could Reveal Immune Cell Secrets and Improve Treatments

By MedImaging International staff writers
Posted on 13 Dec 2023
Image: Nano-sized bubbles allow macrophages to stand out from their fellow cells in ultrasound imagery (Photo courtesy of Penn State)
Image: Nano-sized bubbles allow macrophages to stand out from their fellow cells in ultrasound imagery (Photo courtesy of Penn State)

Macrophages are small, essential cells that play a crucial role in the immune system, involved in various functions such as pathogen detection, wound healing, and managing inflammation related to injuries and diseases like diabetes and rheumatoid arthritis. They have potential applications in cell-based therapies for conditions including cancer, autoimmune disorders, infections, and tissue damage. These therapies might entail isolating, modifying, or engineering macrophages to augment their disease-fighting, immune-regulating, and tissue-repairing abilities. However, the effectiveness of macrophage therapies hinges on the ability to monitor these cells within the body. Researchers have now developed an innovative ultrasound imaging method to continuously observe macrophages in mammalian tissue, with future prospects for human use.

Due to their invisibility in traditional ultrasound imaging, researchers at Penn State (University Park, PA, USA) formulated a contrast agent to distinguish macrophages from other cells in the tissue. This involved the use of nanoemulsions - mixtures of minuscule oil droplets, nanometers in size, suspended in a liquid. The team aimed to create more stable bubbles using these nanoemulsions. In ultrasound imaging, gas bubbles effectively reflect sound waves, but standard bubbles injected into the body burst quickly. The researchers introduced nanoemulsion droplets to the macrophages, which internalized them. Upon ultrasound exposure, the droplets underwent a phase change to gas, forming bubbles. This transformation was facilitated by the ultrasound waves' pressure, which oscillates to force the droplet to vaporize into a gas bubble.

This technique was successfully tested in a porcine tissue sample, demonstrating the ability to image macrophages effectively. This method offers a continuous insight into the actions of immune cells within the body, enhancing the understanding of immune system regulation and its role in combating diseases. Moreover, it holds promise for advancing immune cell therapies, potentially leading to more effective treatments with fewer side effects. For instance, it could enable the development of targeted macrophage cell therapies for cancer patients. Future research directions include applying this technique for visualizing other types of immune cells in humans or monitoring arterial plaque buildup.

Related Links:
Penn State

Breast Localization System
MAMMOREP LOOP
40/80-Slice CT System
uCT 528
Post-Processing Imaging System
DynaCAD Prostate
New
Adjustable Mobile Barrier
M-458

Channels

Nuclear Medicine

view channel
Image: Perovskite crystal boules are grown in carefully controlled conditions from the melt (Photo courtesy of Mercouri Kanatzidis/Northwestern University)

New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis

Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more

General/Advanced Imaging

view channel
Image: The Angio-CT solution integrates the latest advances in interventional imaging (Photo courtesy of Canon Medical)

Cutting-Edge Angio-CT Solution Offers New Therapeutic Possibilities

Maintaining accuracy and safety in interventional radiology is a constant challenge, especially as complex procedures require both high precision and efficiency. Traditional setups often involve multiple... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.