We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Stamp-Sized Ultrasound Sticker Produces Clear Images of Internal Organs

By MedImaging International staff writers
Posted on 01 Aug 2022
Print article
Image: Engineers have developed stickers that can see inside the body (Photo courtesy of MIT)
Image: Engineers have developed stickers that can see inside the body (Photo courtesy of MIT)

Ultrasound imaging is a safe and noninvasive window into the body’s workings, providing clinicians with live images of a patient’s internal organs. To capture these images, trained technicians manipulate ultrasound wands and probes to direct sound waves into the body. These waves reflect back out to produce high-resolution images of a patient’s heart, lungs, and other deep organs. Currently, ultrasound imaging requires bulky and specialized equipment available only in hospitals and doctor’s offices. Now, a new design might make the technology as wearable and accessible as buying Band-Aids at the pharmacy.

A team of engineers at MIT (Cambridge, MA, USA) has designed a new ultrasound sticker - a stamp-sized device that sticks to skin and can provide continuous ultrasound imaging of internal organs for 48 hours. The researchers applied the stickers to volunteers and showed the devices produced live, high-resolution images of major blood vessels and deeper organs such as the heart, lungs, and stomach. The stickers maintained a strong adhesion and captured changes in underlying organs as volunteers performed various activities, including sitting, standing, jogging, and biking.

The current design requires connecting the stickers to instruments that translate the reflected sound waves into images. The researchers point out that even in their current form, the stickers could have immediate applications: For instance, the devices could be applied to patients in the hospital, similar to heart-monitoring EKG stickers, and could continuously image internal organs without requiring a technician to hold a probe in place for long periods of time. If the devices can be made to operate wirelessly - a goal the team is currently working toward - the ultrasound stickers could be made into wearable imaging products that patients could take home from a doctor’s office or even buy at a pharmacy.

“We envision a few patches adhered to different locations on the body, and the patches would communicate with your cellphone, where AI algorithms would analyze the images on demand,” said the study’s senior author, Xuanhe Zhao, professor of mechanical engineering and civil and environmental engineering at MIT. “We believe we’ve opened a new era of wearable imaging: With a few patches on your body, you could see your internal organs.”

Related Links:
MIT 

New
Gold Supplier
IMRT Thorax Phantom
CIRS Model 002LFC
Gold Supplier
Conductive Gel
Tensive
Contrast Media Injector
CT motion SPICY
New
Ultrasound Doppler System
BT-220

Print article
Sun Nuclear -    Mirion

Channels

Radiography

view channel
Image: Radiologists outperformed AI in identifying lung diseases on chest X-ray (Photo courtesy of RSNA)

Radiologists Beat AI in Detecting Common Lung Diseases on Chest X-Rays

Chest X-rays are frequently used for diagnosis, but it takes a lot of training and expertise to read these images correctly. Although the Food and Drug Administration (FDA) has approved some artificial... Read more

Nuclear Medicine

view channel
Image: Imaging entire body instead of only the primary cancer site can provide a total estimate of HER2 expression (Photo courtesy of 123RF)

Whole-Body PET/CT Predicts Response to HER2-Targeted Therapy in Metastatic Breast Cancer Patients

Around 20% of women diagnosed with breast cancer show overexpression of human epidermal growth factor receptor 2 (HER2), making it a key therapy target for new as well as recurring cases.... Read more

General/Advanced Imaging

view channel
Image: Annalise Enterprise CTB acts like a ‘second pair of eyes’ for radiologists (Photo courtesy of Annalise.ai)

Deep Learning System Boosts Radiologist Accuracy and Speed for Head CTs

Non-contrast computed tomography of the brain (NCCTB) is a commonly employed method for identifying intracranial pathology. Despite its frequent use, the complex scan outcomes are prone to being misunderstood.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The partnership combines best-in-class AI-powered technologies for musculoskeletal imaging workflows (Photo courtesy of ImageBiopsy Lab)

AI-Powered Technologies to Aid Interpretation of X-Ray and MRI Images for Improved Disease Diagnosis

Musculoskeletal (MSK) conditions impact more people worldwide than issues related to the circulatory or respiratory systems. Even so, diagnostic procedures for these conditions often still lean on outdated... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.