We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Model Accurately Detects Thyroid Cancer and Predicts Outcomes from Ultrasound Images

By MedImaging International staff writers
Posted on 25 Feb 2022
Print article
Image: AI model examines ultrasound images to detect thyroid cancer (Photo courtesy of Unsplash)
Image: AI model examines ultrasound images to detect thyroid cancer (Photo courtesy of Unsplash)

A new study has found that an artificial intelligence (AI) model incorporating multiple methods of machine learning accurately detects thyroid cancer and predicts pathological and genomic outcomes through analysis of routine ultrasound images.

The AI model developed by researchers at Mass General Cancer Center (Boston, MA, USA) could present a low-cost, non-invasive option for screening, staging and personalized treatment planning for the disease. To train and validate the AI platform, researchers obtained 1,346 thyroid nodule images through routine diagnostic ultrasound from 784 patients. The ultrasound images were divided into two datasets, one for internal training and validation, and one for external validation. Malignancy was confirmed with samples obtained from fine needle biopsy. Pathological staging and mutational status were confirmed with operative reports and genomic sequencing, respectively.

Unlike the conventional AI approach, researchers combined multiple AI methods for the model, including (1) radiomics, which extracts a large number of quantitative features from the images; (2) topological data analysis (TDA), which assesses the spatial relationship between data points in the images; (3) deep learning, where algorithms run the data through multiple layers of an AI neural network to generate predictions; and (4) machine learning (ML), in which an algorithm utilizes Thyroid Imaging Reporting and Data System (TI-RADS)-defined ultrasound properties as ML features.

A multimodal platform utilizing these four methods accurately predicted 98.7% of thyroid nodule malignancies in the internal dataset, significantly outperforming individual AI modalities used alone. By comparison, the individual radiomics model predicted 89% of malignancies (p<0.001 compared to the multimodal platform), the deep learning model achieved 87% accuracy (p=0.002), and TDA and (ML) TI-RADS were accurate for 81% and 80% of the samples, respectively (both p<0.001). On the external validation dataset, the model was 93% accurate for malignancy prediction.

A multimodal model comprising radiomics, TDA and (ML)TI-RADS also was able to distinguish pathological stage (93% accuracy for T-stage, 89% for N-stage, and 98% for extrathyroidal extension). Additionally, the model identified BRAF V600E mutation, which can be treated with targeted therapy, with 96% accuracy.

"Thyroid cancer is one of the most rapidly increasing cancers in the United States, largely due to increased detection and improved diagnostics. We have developed an artificial intelligence platform that would examine ultrasound images and predict with high accuracy whether a potentially problematic thyroid nodule is, in fact, cancerous. If it is cancerous, we can further predict the tumor stage, the nodal stage and the presence or absence of BRAF mutation," said senior author Annie Chan, MD, Director of the Head and Neck Radiation Oncology Research Program at the Mass General Cancer Center. "If caught early, this disease is highly treatable, and patients generally can expect to live a long time after treatment."

Related Links:
Mass General Cancer Center 

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound System
Acclarix AX9
New
X-Ray QA Meter
Piranha CT
DR Flat Panel Detector
1500L

Print article
Radcal

Channels

MRI

view channel
Image: PET/MRI can accurately classify prostate cancer patients (Photo courtesy of 123RF)

PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients

The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.