We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Olympus

Manufactures optical and digital equipment for the healthcare and consumer electronics sectors, including endoscopy a... read more Featured Products: More products

Download Mobile App




SuperPulsed Laser Shortens Kidney Stone Procedure Times

By MedImaging International staff writers
Posted on 03 Feb 2022
Image: SuperPulsed Laser Shortens Kidney Stone Procedure Times (Photo courtesy of Olympus)
Image: SuperPulsed Laser Shortens Kidney Stone Procedure Times (Photo courtesy of Olympus)
A next-generation thulium fiber laser (TFL) exhibits higher lithotripsy performance than post-modulation Holmium:YAG lasers, according to a new study.

The Olympus (Tokyo, Japan) Soltive Laser System is designed for stone lithotripsy, treating benign prostatic hyperplasia, and other soft tissue applications. The laser energy is emitted at 1940 nanometers, the optimal wavelength for peak absorption in water. This allows more than four times greater energy absorption than the current standard of care, Holmium:YAG lasers. Soltive weighs just 40 kg, has a compact footprint an eighth of the size of other systems, fits on a standard wheeled OR cart, and is considerably quieter than other laser systems.

Features include air-cooling, dramatically reduced retropulsion, more control during lithotripsy and faster dusting, and four times greater absorption, as the optimum laser wavelength results in more energy transferred to the stone. In addition, Soltive only requires a standard wall outlet, without the need for a special infrastructure in the operating room. The small, flexible 150 μ core diameter fibers offer better flexibility and minimized scope deflection loss, as compared to 200 μ and larger fibers.

“When Olympus launched the Soltive laser system, we were excited to offer an innovative laser technology that would provide urologists a tool to improve efficiencies and patient outcomes,” said Patrick MacCarthy, VP of the Urology Business Unit at Olympus. “Now, we're excited to see the results of independent studies that show how Soltive is lowering the times and costs of kidney stone procedures.”

During laser lithotripsy, a laser beam is transmitted via a flexible quartz fiber through the working channel of the cholangiopancreatoscope; it requires more precise localization of the stone than acoustic lithotripsy, as fragmentation is enhanced by direct contact. The application of repetitive pulses of laser energy to the stone leads to the formation of a gaseous collection of ions and free electrons of high kinetic energy. This plasma cloud rapidly expands as it absorbs the laser energy and then collapses, inducing a spherical mechanical shockwave between the laser fiber and the stone, leading to stone fragmentation.

Related Links:
Olympus

Pocket Fetal Doppler
CONTEC10C/CL
Mobile X-Ray System
K4W
Half Apron
Demi
Biopsy Software
Affirm® Contrast

Channels

Nuclear Medicine

view channel
Image: LHSCRI scientist Dr. Glenn Bauman stands in front of the PET scanner (Photo courtesy of LHSCRI)

New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer

Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.