We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
IBA-Radcal

Download Mobile App




AI Enabled Ultrasound Device Advances Spine Surgery

By MedImaging International staff writers
Posted on 29 Apr 2020
Image: The SonoVision ultrasound imaging system (Photo courtesy of TDi).
Image: The SonoVision ultrasound imaging system (Photo courtesy of TDi).
An innovative real-time surgical ultrasound imaging platform provides intraoperative imaging assistance in spinal procedure applications.

The Tissue Differentiation Intelligence (TDi; Delray Beach; FL. USA) SonoVision ultrasound imaging system is intended for visualization and evaluation of bones, nerves, vascular, and other anatomical structures using the Beluga1 10 MHz transducer probe, an ergonomically designed probe developed specifically for spinal procedures. The system includes image processing software used to define anatomical features in an ultrasound B-mode image. By applying layers of image-processing algorithms to the images collected intraoperatively, it can then differentiate nerve, muscle, bone, and vessels in real time.

Features include Doppler echographic imaging and non-user adjustable acoustic output; intuitive color flow mapping of nerve, muscle, and bone; real-time 2D bone and tissue scanning and differentiation; internal function radiofrequency (RF) energy, resulting in very low RF emissions; proprietary imaging software, data capture, and external storage; and electrical safety, acoustic output, and electromagnetic compatibility that meet international standards. An in-vivo porcine study validated the accuracy of SonoVision in identifying the presence and absence of nerves within specimen psoas tissue.

“TDi ushers in a new era of innovations related to soft tissue imaging in spine surgery, and really, the beginning of a much broader trend of artificial intelligence and machine learning being applied to satisfy challenging clinical requirements in spine surgery,” said Alex Lukianov, Chairman and CEO of TDi, following recent U.S. Food and Drug Administration (FDA) clearance. “FDA clearance paves the way for ultrasound to be used as a new imaging modality for spine surgery by overcoming the impracticalities of conventional ultrasound.”

Deep learning is part of a broader family of AI machine learning methods based on data representations, as opposed to task specific algorithms. It involves neural network algorithms that use a cascade of many layers of nonlinear processing units for feature extraction and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.

Related Links:
Tissue Differentiation Intelligence

Post-Processing Imaging System
DynaCAD Prostate
Biopsy Software
Affirm® Contrast
Radiation Safety Barrier
RayShield Intensi-Barrier
Mobile X-Ray System
K4W

Channels

Nuclear Medicine

view channel
Image: CXCR4-targeted PET imaging reveals hidden inflammatory activity (Diekmann, J. et al., J Nucl Med (2025). DOI: 10.2967/jnumed.125.270807)

PET Imaging of Inflammation Predicts Recovery and Guides Therapy After Heart Attack

Acute myocardial infarction can trigger lasting heart damage, yet clinicians still lack reliable tools to identify which patients will regain function and which may develop heart failure.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.