Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Elasticity Training Helps AI Diagnose Breast Cancer

By MedImaging International staff writers
Posted on 22 Jul 2019
Teaching artificial intelligence (AI) algorithms to identify the ultrasound elastic heterogeneity of a tumor can be used to distinguish benign tumors from their malignant counterparts, according to a new study.

Researchers at the University of Southern California (USC; Los Angeles, USA), Rensselaer Polytechnic Institute (RPI; Troy, NY, USA), and other institutions created physics-based models that simulated varying levels of the two key ultrasound properties of a cancerous breast tumor - elastic heterogeneity and nonlinear elastic response. They then used thousands of data inputs derived from the models in order to train a deep convolutional neural network (CNN) to classify tumors as malignant or benign.

A 5-layer CNN was trained with 8,000 samples for heterogeneity, and a 4-layer CNN was trained with 4,000 samples for nonlinear elasticity. When queried on additional synthetic images, the CNNs achieved classification accuracies of 99.7%−99.9%. The researchers then applied the nonlinear elasticity classifier, which was trained entirely using simulated data, in order to classify displacement images obtained from ten patients with breast lesions; the CNN correctly classified eight out of ten cases.

“The general consensus is these types of algorithms have a significant role to play, including from imaging professionals whom it will impact the most,” said senior author Professor Assad Oberai, PhD, of the USC department of aerospace and mechanical engineering. “However, these algorithms will be most useful when they do not serve as black boxes, but instead, a tool that helps guide radiologists to more accurate conclusions.”

Elastography relies on the generation of shear waves determined by the displacement of tissues induced by the force of a focused ultrasound beam or by external pressure. The shear waves are lateral waves, with a motion perpendicular to the direction of the generating force, traveling slowly, and are rapidly attenuated by tissue. The propagation velocity of the shear waves correlates with the elasticity of tissue.

Related Links:
University of Southern California
Rensselaer Polytechnic Institute

Pocket Fetal Doppler
CONTEC10C/CL
Portable X-ray Unit
AJEX140H
Digital Radiographic System
OMNERA 300M
Digital X-Ray Detector Panel
Acuity G4

Channels

Nuclear Medicine

view channel
Image: Perovskite crystal boules are grown in carefully controlled conditions from the melt (Photo courtesy of Mercouri Kanatzidis/Northwestern University)

New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis

Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more

General/Advanced Imaging

view channel
Image: The Angio-CT solution integrates the latest advances in interventional imaging (Photo courtesy of Canon Medical)

Cutting-Edge Angio-CT Solution Offers New Therapeutic Possibilities

Maintaining accuracy and safety in interventional radiology is a constant challenge, especially as complex procedures require both high precision and efficiency. Traditional setups often involve multiple... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.