We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Elasticity Training Helps AI Diagnose Breast Cancer

By MedImaging International staff writers
Posted on 22 Jul 2019
Teaching artificial intelligence (AI) algorithms to identify the ultrasound elastic heterogeneity of a tumor can be used to distinguish benign tumors from their malignant counterparts, according to a new study.

Researchers at the University of Southern California (USC; Los Angeles, USA), Rensselaer Polytechnic Institute (RPI; Troy, NY, USA), and other institutions created physics-based models that simulated varying levels of the two key ultrasound properties of a cancerous breast tumor - elastic heterogeneity and nonlinear elastic response. They then used thousands of data inputs derived from the models in order to train a deep convolutional neural network (CNN) to classify tumors as malignant or benign.

A 5-layer CNN was trained with 8,000 samples for heterogeneity, and a 4-layer CNN was trained with 4,000 samples for nonlinear elasticity. When queried on additional synthetic images, the CNNs achieved classification accuracies of 99.7%−99.9%. The researchers then applied the nonlinear elasticity classifier, which was trained entirely using simulated data, in order to classify displacement images obtained from ten patients with breast lesions; the CNN correctly classified eight out of ten cases.

“The general consensus is these types of algorithms have a significant role to play, including from imaging professionals whom it will impact the most,” said senior author Professor Assad Oberai, PhD, of the USC department of aerospace and mechanical engineering. “However, these algorithms will be most useful when they do not serve as black boxes, but instead, a tool that helps guide radiologists to more accurate conclusions.”

Elastography relies on the generation of shear waves determined by the displacement of tissues induced by the force of a focused ultrasound beam or by external pressure. The shear waves are lateral waves, with a motion perpendicular to the direction of the generating force, traveling slowly, and are rapidly attenuated by tissue. The propagation velocity of the shear waves correlates with the elasticity of tissue.

Related Links:
University of Southern California
Rensselaer Polytechnic Institute

Digital Intelligent Ferromagnetic Detector
Digital Ferromagnetic Detector
Post-Processing Imaging System
DynaCAD Prostate
Multi-Use Ultrasound Table
Clinton
Mobile X-Ray System
K4W

Channels

Nuclear Medicine

view channel
Image: LHSCRI scientist Dr. Glenn Bauman stands in front of the PET scanner (Photo courtesy of LHSCRI)

New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer

Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.