We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Elastography Technique Helps Determine Liver Fibrosis

By MedImaging International staff writers
Posted on 02 Jan 2014
Print article
Image: The Aixplorer Ultrasound System with SWE (Photo courtesy of SuperSonic Imagine).
Image: The Aixplorer Ultrasound System with SWE (Photo courtesy of SuperSonic Imagine).
A noninvasive technique visualizes and quantitatively measures tissue stiffness across the different stages of fibrosis leading up to cirrhosis.

The Aixplorer Ultrasound System with ShearWave Elastography (SWE) can help determine quantitative liver stiffness values in an easy-to-use manner, which can be safely repeated over time to follow disease progression or regression. The system is based on proprietary MultiWave technology, which images two types of waves to better characterize tissue; an ultrasound wave to ensure image quality, and a shear wave to compute and display true tissue stiffness in real time. Broadband technology delivers extremely high-resolution tissue harmonic imaging, which significantly reduces image artifacts and provides better contrast resolution.

The Aixplorer also provides advanced and comprehensive Contrast Enhanced Ultrasound (CEUS) solutions for detection, characterization, and monitoring of solid tumors, particularly in the liver and abdomen. The combination CEUS and SWE enhance the comparison of blood flow in the microcirculation with the mechanical and structural properties of tissue, giving more diagnostic information. Precise measurements of liver stiffness are delivered in kilopascals (kPa); since liver stiffness increases with the severity of fibrosis, the measurement is indicative of the degree of chronic liver injury in cirrhosis and hepatitis C patients.

The diagnostic information can help trigger medical treatment, help to evaluate the progress and effectiveness of drug therapy, and provide regular imaging monitoring for complications. When invasive procedures are needed, the Aixplorer’s image quality is effective in aiding hepatologists and radiologists with ultrasound guided liver procedures such as needle placement for biopsy and paracentesis. The Aixplorer Ultrasound System is a product of SuperSonic Imagine (Aix-en-Provence, France).

“Several clinical studies have concluded that ShearWave Elastography is an accurate, reproducible technique to assess liver disease,” said Jacques Souquet PhD, CEO of SuperSonic Imagine. “The impact of ShearWave Elastography in liver imaging, both in clinical and economic terms, cannot be underestimated. This technology will enable a major shift in patient management.”

Ultrasonic shear-wave elastography is a form of vibrational wave analysis, similar to that of a seismograph during earthquakes. The main shockwave that propagates through the earth is a longitudinal wave, like that of ultrasound imaging, which runs along the direction of the wave. The secondary wave is a transverse wave that propagates by at right angles to the direction of the wave. These are also called shear waves or elastic shear waves. Shear waves are commonly used in nondestructive testing for flaws in manufactured materials, such as cracks.

Related Links:

SuperSonic Imagine


Gold Supplier
Conductive Gel
Tensive
New
Gold Supplier
IMRT Thorax Phantom
CIRS Model 002LFC
New
Ultrasound Diagnostic System
CMS600P2PLUS
New
Wireless Flat Panel Detector
750Mc

Print article
Sun Nuclear -    Mirion

Channels

Radiography

view channel
Image: The AI model improves tumor removal accuracy during breast cancer surgery (Photo courtesy of UNC School of Medicine)

AI Model Analyzes Tumors Removed Surgically in Real-Time

During breast cancer surgery, the surgeon removes the tumor, also known as a specimen, along with a bit of the adjacent healthy tissue to ensure all cancerous cells are excised. This specimen is then X-rayed... Read more

MRI

view channel
Image: MRI screen-detected breast cancers have been found to be most often invasive cancers (Photo courtesy of 123RF)

MRI Screen-Detected Breast Cancers Are Mostly Invasive

Annual breast MRI screening is advised for patients with a lifetime breast cancer risk exceeding 20%. There exists robust data about the features of mammographic screen-detected breast cancers, although... Read more

Nuclear Medicine

view channel
Image: An AI model can evaluate brain tumors on PET (Photo courtesy of Freepik)

AI Model for PET Imaging Determines Patient Response to Brain Tumor Treatments

The assessment of changes in metabolic tumor volume (MTV) through PET scans using specific radiotracers like F-18 fluoroethyl tyrosine (FET) plays a vital role in evaluating the treatment response in patients... Read more

General/Advanced Imaging

view channel
Image: Annalise Enterprise CTB acts like a ‘second pair of eyes’ for radiologists (Photo courtesy of Annalise.ai)

Deep Learning System Boosts Radiologist Accuracy and Speed for Head CTs

Non-contrast computed tomography of the brain (NCCTB) is a commonly employed method for identifying intracranial pathology. Despite its frequent use, the complex scan outcomes are prone to being misunderstood.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.