We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Military Radar Techniques Could Help Stroke Victims

By HospiMedica staff writers
Posted on 29 Jan 2008
Military signal processing methods used in radar systems could have the potential to improve early diagnosis and effective monitoring of stroke victims, reports to a new study.

A researcher at the University of Leicester (United Kingdom) investigated new methods of processing an ultrasound signal so as to obtain additional information. This involved developing new signal-processing algorithms for Doppler ultrasound devices by improving the axial resolution obtainable from transcranial Doppler (TCD) systems. The modified techniques helped improve the resolution of medical TCDs, thereby providing more detailed information about the depths at which movement of emboli in the cerebral circulation is occurring. The modifications can also be used to monitor the blood flow through vessels to assess if there are any problems such as blockages. This has the potential to aid in the early diagnosis and also in the monitoring of progression of vascular disease and stroke, since 25% of strokes are due to emboli blocking small blood vessels in the brain.

"Research into the detection of emboli and vascular disease, using ultrasound, has the potential to reduce stroke death and disability rates, and to generate large financial savings,” said study author Joanne Cowe, Ph.D. in electrical and electronic engineering, who wrote her doctoral thesis in medical physics, cardiovascular sciences.

Doppler ultrasound is a noninvasive test that can be used to evaluate blood flow and pressure by bouncing high-frequency sound waves off red blood cells (RBCs). By measuring the rate of change of the pitch (frequency), clinicians can estimate how fast the blood is flowing. The test may be done as an alternative to more invasive procedures such as arteriography and venography, which involve injecting dye into the blood vessel to enhance X-ray images.


Related Links:
University of Leicester
Digital Intelligent Ferromagnetic Detector
Digital Ferromagnetic Detector
Adjustable Mobile Barrier
M-458
Ultrasonic Pocket Doppler
SD1
Pocket Fetal Doppler
CONTEC10C/CL

Channels

Nuclear Medicine

view channel
Image: A bone cancer cell showing supportive fibers (in red), genetic material (in blue), and the specific target protein LRRC15 (in green) (Photo courtesy of Ulmert Laboratory)

Radiotheranostic Approach Detects, Kills and Reprograms Aggressive Cancers

Aggressive cancers such as osteosarcoma and glioblastoma often resist standard therapies, thrive in hostile tumor environments, and recur despite surgery, radiation, or chemotherapy. These tumors also... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.