We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Method Combines EEG, MRI, and ML to Identify Seizure-Prone Brain Regions Before Surgery

By MedImaging International staff writers
Posted on 29 Aug 2024
Print article
Image: The faster, non-invasive approach finds epilepsy hotspots before surgery (Photo courtesy of 123RF)
Image: The faster, non-invasive approach finds epilepsy hotspots before surgery (Photo courtesy of 123RF)

Neurosurgery for patients with drug-resistant epilepsy involves locating the brain regions responsible for seizures. Generally, this requires patients to undergo 7 to 10 days of invasive intracranial EEG monitoring, where electrodes are implanted inside the brain through skull openings to record seizure activity. Researchers have now introduced a shorter, noninvasive technique for mapping seizure zones, which offers insights beyond what traditional EEGs can provide. Detailed in the journal Epilepsia, this novel method integrates standard scalp EEG readings with MRI data to map brain structures and employs machine learning to identify the brain areas most likely to generate seizures.

The team at Boston Children’s Hospital (Boston, MA, USA) conducted a retrospective analysis using approximately five minutes of scalp EEG data from 50 patients with drug-resistant epilepsy who had undergone neurosurgery. By incorporating MRI data and applying machine learning algorithms, they defined functional cortical networks, capable of detecting epileptiform activity not visible to the naked eye and even in the absence of discernible brain abnormalities on MRI. The algorithm showed a 75% accuracy rate (91% sensitivity, 74% specificity) in pinpointing seizure zones during episodes of epileptiform activity and 62% accuracy during non-epileptiform periods. The algorithm was less likely to match the targeted zones in patients who continued to experience seizures post-surgery, implying the initial surgical intervention did not accurately target the epileptic focus.

In cases where surgery did not stop the seizures, the model suggested that not all epileptogenic regions had been removed. It also pointed out scenarios where the epileptic area might be too extensive for resection, suggesting that such patients might better benefit from palliative treatments like neuromodulation. The researchers aim to further validate their approach in a larger, prospective study and determine which patients with drug-resistant epilepsy could most benefit from surgical interventions. Given its brief and noninvasive nature, this new technique could be applied earlier in the disease process, potentially allowing for earlier surgical interventions and helping to mitigate the neurodevelopmental impacts of epilepsy.

“Using computational tools, we can reconstruct cortical activity that the eye cannot catch and understand how different regions are functionally connected,” said Eleonora Tamilia, PhD, who directs the Epilepsy Monitoring Unit Signal and Data Science Program within the Epilepsy Center at Boston Children’s Hospital. “If a seizure starts in one region of the cortex, it’s likely to spread to another network it connects to. Even regions that are far apart may fire together.”

Related Links:
Boston Children’s Hospital

New
Gold Member
X-Ray QA Meter
T3 AD Pro
1.5T Superconducting MRI System
uMR 680
New
Gold Member
X-Ray QA Meter
T3 RG Pro
Endoscopic Ultrasound Fine Needle Biopsy Device
Acquire

Print article
Radcal

Channels

MRI

view channel
Image: MRI-linac allows clinicians to see what’s going on in the brain for the first time (Photo courtesy of Sylvester Comprehensive Cancer Center)

MRI Provides Early Warning System for Glioblastoma Growth

A new study has demonstrated the potential of combining imaging with radiation to shape glioblastoma treatment in real time. The research is the first to quantify tumor changes in glioblastoma patients... Read more

Ultrasound

view channel
Image: Disease captured by the hand-held 3D photoacoustic scanner (Photo courtesy of Dr. Nam Huynh)

Medical Imaging Breakthrough to Revolutionize Cancer and Arthritis Diagnosis

Photoacoustic tomography (PAT) imaging uses laser-generated ultrasound waves to detect subtle changes in small veins and arteries, typically less than a millimeter in size and up to 15mm deep in human tissues.... Read more

Nuclear Medicine

view channel
Image: A new biomarker makes it easier to distinguish between Alzheimer’s and primary tauopathy (Photo courtesy of Shutterstock)

Diagnostic Algorithm Distinguishes Between Alzheimer’s and Primary Tauopathy Using PET Scans

Patients often present at university hospitals with diseases so rare and specific that they are scarcely recognized by physicians in private practice. Primary 4-repeat tauopathies are a notable example.... Read more

General/Advanced Imaging

view channel
Image: A kidney showing positive [89Zr]Zr-girentuximab PET and histologically confirmed clear-cell renal cell carcinoma (Photo courtesy of Dr. Brian Shuch/UCLA Health)

Non-Invasive Imaging Technique Accurately Detects Aggressive Kidney Cancer

Kidney cancers, known as renal cell carcinomas, account for 90% of solid kidney tumors, with over 81,000 new cases diagnosed annually in the United States. Among the various types, clear-cell renal cell... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: Focused ultrasound therapy is poised to become an essential tool in every hospital, cancer care center and physician office (Photo courtesy of Arrayus)

Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer

Pancreatic cancer remains one of the most difficult cancers to treat due to its dense tissue structure, which limits the effectiveness of traditional drug therapies. Bracco Imaging S.A. (Milan, Italy)... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.