We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Improves Emergency-Related Chest X-Ray Interpretation by Non-Radiologist Practitioners

By MedImaging International staff writers
Posted on 30 Jan 2024
Print article
Image: AI has been shown to improve the performance of non-radiologists in chest imaging (Photo courtesy of 123RF)
Image: AI has been shown to improve the performance of non-radiologists in chest imaging (Photo courtesy of 123RF)

Chest X-rays are frequently used to decide if a disease needs immediate attention. However, making this determination is hardly easy. It requires experts to identify things like projection phenomena, superimpositions, and other complex representations in the images. This can be especially difficult for non-radiologists who do not regularly analyze diagnostic imaging. Nevertheless, in emergencies, they might need to make clinical decisions based on these images, often without a radiologist present. Previous research has looked into how AI can help interpret chest X-rays, aiming to make clinical processes more efficient and enhance patient care. In a new study, a team of researchers investigated whether an AI system, based on a convolutional neural network (CNN) and designed for interpreting chest X-rays, could be beneficial in emergency units (EUs). Their study showed that AI can indeed improve chest X-ray interpretation by non-radiologists, which can be particularly valuable in settings with limited resources.

In the study, researchers at the University of Munich Hospital in Germany evaluated an AI algorithm trained on both publicly available and expert-annotated chest imaging data. They examined 563 chest X-rays, each reviewed twice by three certified radiologists, three radiology residents, and three non-radiology residents with emergency unit experience. The study also involved testing non-radiologists on their ability to diagnose four specific conditions: pleural effusion, pneumothorax, pneumonia-like consolidations, and nodules. In its internal validation, the AI algorithm showed an impressive performance, with area under the curve (AUC) scores ranging from 0.95 for nodules to 0.995 for pleural effusion. The researchers noted that non-radiologist accuracy improved for all four conditions when using AI.

Furthermore, the study found that AI assistance notably enhanced agreement among non-radiologist readers in identifying pneumothorax, including a significant increase in the AUC score and improvements in both sensitivity and accuracy. Similarly, nodule detection saw the greatest improvement with AI help, marked by increases in sensitivity, accuracy, and AUC score. When the radiologists used the AI algorithm, they saw smaller improvements in performance, sensitivity, and accuracy, most of which were not significant. These results led the researchers to conclude that AI support could be particularly helpful for less experienced physicians in situations where experienced radiologists or emergency physicians are unavailable.

“In an emergency unit setting without 24/7 radiology coverage, the presented AI solution features an excellent clinical support tool to non-radiologists, similar to a second reader, and allows for a more accurate primary diagnosis and thus earlier therapy initiation,” stated the team.

Related Links:
University of Munich Hospital

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Computed Tomography (CT) Scanner
Aquilion Serve SP
New
Silver Member
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers
New
Ultrasound Software
UltraExtend NX

Print article
Radcal

Channels

MRI

view channel
Image: The VR visualization platform provides patients and surgeons with access to real-time 3D medical imaging (Photo courtesy of Avatar Medical)

VR Visualization Platform Creates 3D Patient Avatars from CT and MR Images in Real-Time

Surgeons and patients must currently rely on black and white medical images interpreted by radiologists. This limitation becomes more pronounced in complex surgeries, leading to issues such as patient... Read more

Ultrasound

view channel
Image: Intravascular ultrasound provides a more accurate and specific picture of the coronary arteries (Photo courtesy of 123RF)

Intravascular Imaging Significantly Improves Outcomes in Cardiovascular Stenting Procedures

Individuals with coronary artery disease, which involves plaque accumulation in the arteries leading to symptoms like chest pain, shortness of breath, and heart attacks, often undergo a non-surgical procedure... Read more

Nuclear Medicine

view channel
Image: The PET imaging technique can noninvasively detect active inflammation before clinical symptoms arise (Photo courtesy of 123RF)

New PET Tracer Detects Inflammatory Arthritis Before Symptoms Appear

Rheumatoid arthritis, the most common form of inflammatory arthritis, affects 18 million people globally. It is a complex autoimmune disease marked by chronic inflammation, leading to cartilage and bone... Read more

General/Advanced Imaging

view channel
Image: Routine chest CT holds untapped potential for revealing patients at risk for cardiovascular disease (Photo courtesy of Johns Hopkins)

Routine Chest CT Exams Can Identify Patients at Risk for Cardiovascular Disease

Coronary artery disease (CAD) is the primary cause of death globally. Adults without symptoms but at risk can be screened using EKG-gated coronary artery calcium (CAC) CT scans, which are crucial in assessing... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The acquisition will expand IBA’s medical imaging quality assurance offering (Photo courtesy of Radcal)

IBA Acquires Radcal to Expand Medical Imaging Quality Assurance Offering

Ion Beam Applications S.A. (IBA, Louvain-La-Neuve, Belgium), the global leader in particle accelerator technology and a world-leading provider of dosimetry and quality assurance (QA) solutions, has entered... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.