We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Improves Emergency-Related Chest X-Ray Interpretation by Non-Radiologist Practitioners

By MedImaging International staff writers
Posted on 30 Jan 2024
Print article
Image: AI has been shown to improve the performance of non-radiologists in chest imaging (Photo courtesy of 123RF)
Image: AI has been shown to improve the performance of non-radiologists in chest imaging (Photo courtesy of 123RF)

Chest X-rays are frequently used to decide if a disease needs immediate attention. However, making this determination is hardly easy. It requires experts to identify things like projection phenomena, superimpositions, and other complex representations in the images. This can be especially difficult for non-radiologists who do not regularly analyze diagnostic imaging. Nevertheless, in emergencies, they might need to make clinical decisions based on these images, often without a radiologist present. Previous research has looked into how AI can help interpret chest X-rays, aiming to make clinical processes more efficient and enhance patient care. In a new study, a team of researchers investigated whether an AI system, based on a convolutional neural network (CNN) and designed for interpreting chest X-rays, could be beneficial in emergency units (EUs). Their study showed that AI can indeed improve chest X-ray interpretation by non-radiologists, which can be particularly valuable in settings with limited resources.

In the study, researchers at the University of Munich Hospital in Germany evaluated an AI algorithm trained on both publicly available and expert-annotated chest imaging data. They examined 563 chest X-rays, each reviewed twice by three certified radiologists, three radiology residents, and three non-radiology residents with emergency unit experience. The study also involved testing non-radiologists on their ability to diagnose four specific conditions: pleural effusion, pneumothorax, pneumonia-like consolidations, and nodules. In its internal validation, the AI algorithm showed an impressive performance, with area under the curve (AUC) scores ranging from 0.95 for nodules to 0.995 for pleural effusion. The researchers noted that non-radiologist accuracy improved for all four conditions when using AI.

Furthermore, the study found that AI assistance notably enhanced agreement among non-radiologist readers in identifying pneumothorax, including a significant increase in the AUC score and improvements in both sensitivity and accuracy. Similarly, nodule detection saw the greatest improvement with AI help, marked by increases in sensitivity, accuracy, and AUC score. When the radiologists used the AI algorithm, they saw smaller improvements in performance, sensitivity, and accuracy, most of which were not significant. These results led the researchers to conclude that AI support could be particularly helpful for less experienced physicians in situations where experienced radiologists or emergency physicians are unavailable.

“In an emergency unit setting without 24/7 radiology coverage, the presented AI solution features an excellent clinical support tool to non-radiologists, similar to a second reader, and allows for a more accurate primary diagnosis and thus earlier therapy initiation,” stated the team.

Related Links:
University of Munich Hospital

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Powered Echocardiography Imaging/Ultrasound Table
Powered Echo
1.5T MRI Scanner
MAGNETOM Amira
Full Field Digital Mammography Phantom
Mammo FFDM Phantom

Print article

Channels

MRI

view channel
Image: A new paradigm in radiation therapy planning aims to improve treatment outcomes for children with brain tumors (Photo courtesy of 123RF)

AI Software Uses MRI Scans to Automatically Segment Key Brain Structures for Improved Radiation Therapy Planning

Advances in radiation therapy have led to significant innovations in the treatment of brain tumors in children, focusing on precision to minimize damage to surrounding healthy brain tissue.... Read more

Ultrasound

view channel
Image: Visual abstract of article “Break Wave Lithotripsy for Urolithiasis: Results of the First-in-Human International Multi-Institutional Clinical Trial” (Photo courtesy of Journal of Urology)

Noninvasive Ultrasound Technology Provides Effective Treatment for Urinary Stones

Urinary stones are a common medical issue and a frequent cause of emergency department (ED) visits. Treatment options typically include surgery, such as ureteroscopy, or extracorporeal shockwave lithotripsy... Read more

Nuclear Medicine

view channel
Image: A new biomarker makes it easier to distinguish between Alzheimer’s and primary tauopathy (Photo courtesy of Shutterstock)

Diagnostic Algorithm Distinguishes Between Alzheimer’s and Primary Tauopathy Using PET Scans

Patients often present at university hospitals with diseases so rare and specific that they are scarcely recognized by physicians in private practice. Primary 4-repeat tauopathies are a notable example.... Read more

General/Advanced Imaging

view channel
Image: The AI tool predicts stroke outcomes after arterial clot removal with 78% accuracy (Photo courtesy of Adobe Stock)

AI Tool Accurately Predicts Stroke Outcomes After Arterial Clot Removal Using CTA Scans

In current stroke treatment protocols, advanced imaging techniques, particularly Computed Tomography Angiography (CTA), play a vital role in determining the management strategy for Large Vessel Occlusion (LVO).... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: SONAS is a portable, battery-powered ultrasound device for non-invasive brain perfusion assessment (Photo courtesy of BURL Concepts)

Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging

Ischemic stroke assessment has long been hampered by the limitations of traditional imaging techniques like CT and MRI. These methods are expensive, not always immediately available in emergency situations,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.