We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




AI Improves Emergency-Related Chest X-Ray Interpretation by Non-Radiologist Practitioners

By MedImaging International staff writers
Posted on 30 Jan 2024
Image: AI has been shown to improve the performance of non-radiologists in chest imaging (Photo courtesy of 123RF)
Image: AI has been shown to improve the performance of non-radiologists in chest imaging (Photo courtesy of 123RF)

Chest X-rays are frequently used to decide if a disease needs immediate attention. However, making this determination is hardly easy. It requires experts to identify things like projection phenomena, superimpositions, and other complex representations in the images. This can be especially difficult for non-radiologists who do not regularly analyze diagnostic imaging. Nevertheless, in emergencies, they might need to make clinical decisions based on these images, often without a radiologist present. Previous research has looked into how AI can help interpret chest X-rays, aiming to make clinical processes more efficient and enhance patient care. In a new study, a team of researchers investigated whether an AI system, based on a convolutional neural network (CNN) and designed for interpreting chest X-rays, could be beneficial in emergency units (EUs). Their study showed that AI can indeed improve chest X-ray interpretation by non-radiologists, which can be particularly valuable in settings with limited resources.

In the study, researchers at the University of Munich Hospital in Germany evaluated an AI algorithm trained on both publicly available and expert-annotated chest imaging data. They examined 563 chest X-rays, each reviewed twice by three certified radiologists, three radiology residents, and three non-radiology residents with emergency unit experience. The study also involved testing non-radiologists on their ability to diagnose four specific conditions: pleural effusion, pneumothorax, pneumonia-like consolidations, and nodules. In its internal validation, the AI algorithm showed an impressive performance, with area under the curve (AUC) scores ranging from 0.95 for nodules to 0.995 for pleural effusion. The researchers noted that non-radiologist accuracy improved for all four conditions when using AI.

Furthermore, the study found that AI assistance notably enhanced agreement among non-radiologist readers in identifying pneumothorax, including a significant increase in the AUC score and improvements in both sensitivity and accuracy. Similarly, nodule detection saw the greatest improvement with AI help, marked by increases in sensitivity, accuracy, and AUC score. When the radiologists used the AI algorithm, they saw smaller improvements in performance, sensitivity, and accuracy, most of which were not significant. These results led the researchers to conclude that AI support could be particularly helpful for less experienced physicians in situations where experienced radiologists or emergency physicians are unavailable.

“In an emergency unit setting without 24/7 radiology coverage, the presented AI solution features an excellent clinical support tool to non-radiologists, similar to a second reader, and allows for a more accurate primary diagnosis and thus earlier therapy initiation,” stated the team.

Related Links:
University of Munich Hospital

Computed Tomography System
Aquilion ONE / INSIGHT Edition
Silver Member
X-Ray QA Device
Accu-Gold+ Touch Pro
Digital Intelligent Ferromagnetic Detector
Digital Ferromagnetic Detector
X-ray Diagnostic System
FDX Visionary-A

Channels

Nuclear Medicine

view channel
Image: LHSCRI scientist Dr. Glenn Bauman stands in front of the PET scanner (Photo courtesy of LHSCRI)

New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer

Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more

General/Advanced Imaging

view channel
Image: Concept of the photo-thermoresponsive SCNPs (J F Thümmler et al., Commun Chem (2025). DOI: 10.1038/s42004-025-01518-x)

New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents

Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.