We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

Deep Learning Model Accurately Predicts Pneumonia Mortality on Chest X-Rays

By MedImaging International staff writers
Posted on 23 Jun 2023
Print article
Image: Deep learning could better guide clinical decision-making in patients with pneumonia (Photo courtesy of Freepik)
Image: Deep learning could better guide clinical decision-making in patients with pneumonia (Photo courtesy of Freepik)

Chest X-rays are a crucial diagnostic tool for community-acquired pneumonia (CAP), despite their uncertain prognostic value. Now, a deep learning (DL)-based model that utilizes initial chest X-rays has shown potential in accurately predicting 30-day mortality, outperforming the well-established risk prediction tool, the CURB-65 score.

Researchers at Seoul National University (Seoul, Korea) have created a DL model using data from 7,105 patients from one institution, gathered between March 2013 and December 2019. This data was used to form training, validation, and internal testing sets to predict the risk of all-cause mortality within 30 days post-CAP diagnosis using patients' initial chest radiographs. The researchers then evaluated the DL model in two test cohorts: 947 patients diagnosed with CAP during emergency department visits at the original institution between January 2020 and December 2020, and 848 additional patients from two separate institutions from January 2020 to December 2020 and March 2019 to October 2021. The study compared the performance of the DL model with a risk score based on confusion, blood urea nitrogen level, respiratory rate, blood pressure, and age ≥ 65 years (CURB-65 score).

The results demonstrated that the DL model, using initial chest radiographs, could predict 30-day, all-cause mortality in patients with CAP with an area under the curve (AUC) between 0.77 and 0.80 in the different test cohorts. Moreover, the model demonstrated higher specificity (61–69% range) than the CURB-65 score (44–58% range) at the same sensitivity level. Given these results, the researchers suggest that this DL-based model could better assist clinicians in decision-making when managing patients with CAP.

“The deep learning (DL) model may guide clinical decision-making in the management of patients with CAP by identifying high-risk patients who warrant hospitalization and intensive treatment,” said Eui Jin Hwang, MD, PhD, from the Department of Radiology at Seoul National University College of Medicine.

Related Links:
Seoul National University 

Gold Supplier
Conductive Gel
Gold Supplier
128 Slice CT Scanner
Supria 128
Point-Of-Care Ultrasound (POCUS) System
Sonosite ST
Silver Supplier
Bucky Protector
Bucky Protector

Print article
Sun Nuclear -    Mirion



view channel
Image: MRI screen-detected breast cancers have been found to be most often invasive cancers (Photo courtesy of 123RF)

MRI Screen-Detected Breast Cancers Are Mostly Invasive

Annual breast MRI screening is advised for patients with a lifetime breast cancer risk exceeding 20%. There exists robust data about the features of mammographic screen-detected breast cancers, although... Read more


view channel
Image: FloPatch is a revolutionary tool that facilitates real-time precision in IV fluid management in sepsis (Photo courtesy of Flosonics)

Wireless, Wearable Doppler Ultrasound Revolutionizes Precision Fluid Management in Sepsis Care

When a patient comes to the hospital with sepsis, administering intravenous (IV) fluids is usually the first course of action. However, too much IV fluid can do more harm than good, causing additional... Read more

Nuclear Medicine

view channel
Image: An AI model can evaluate brain tumors on PET (Photo courtesy of Freepik)

AI Model for PET Imaging Determines Patient Response to Brain Tumor Treatments

The assessment of changes in metabolic tumor volume (MTV) through PET scans using specific radiotracers like F-18 fluoroethyl tyrosine (FET) plays a vital role in evaluating the treatment response in patients... Read more

General/Advanced Imaging

view channel
Image: Annalise Enterprise CTB acts like a ‘second pair of eyes’ for radiologists (Photo courtesy of Annalise.ai)

Deep Learning System Boosts Radiologist Accuracy and Speed for Head CTs

Non-contrast computed tomography of the brain (NCCTB) is a commonly employed method for identifying intracranial pathology. Despite its frequent use, the complex scan outcomes are prone to being misunderstood.... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.