We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Model Revealed for Tailoring Pediatric CT Dose

By MedImaging International staff writers
Posted on 06 Sep 2017
Image: The image shows the effect of reconstruction Field of View (FOV) size on the displayed diameter of a nodule in a five week old, and a 12-year-old child (Photo courtesy of Ehsan Samei, Donald Frush, and Xiang Li).
Image: The image shows the effect of reconstruction Field of View (FOV) size on the displayed diameter of a nodule in a five week old, and a 12-year-old child (Photo courtesy of Ehsan Samei, Donald Frush, and Xiang Li).
Scientists have revealed a new scientific framework that will enable clinicians to tailor a precise radiation dose, and achieve the best image quality for pediatric patients.

Size-specific Computed Tomography (CT) imaging protocols are decided based on diagnostic accuracy per procedure, patient size, and radiation dose. The size of pediatric patients is a dominant factor for imaging structures in the body and tissues.

The scientists from the Duke University Medical Center (DukeHealth; Durham, NC, USA) and the Cleveland Clinic (Cleveland, OH, USA) published the results of their research online in the August 21, 2017, issue of the Journal of Medical Imaging.

The authors of the study based the new research on two of their own prior foundational studies, in which they assessed radiation dose, effective dose, and the risk index for nine pediatric age-size groups. The studies included simulated lesions, and added noise, and were assessed for the accuracy of nodule detection. The researchers then used the accuracy-dose relationships to optimize scan parameters for each category of patients.

The new model that the researchers developed is intended to help clinicians optimize individual scan parameters for a large range of pediatric body sizes, providing consistent diagnostic performance. The framework could also be used in the future for optimizing medical imaging exams across pediatric and adult patients, and other imaging modalities.

Associate Editor of the Journal of Medical Imaging, Christoph Hoeschen, Otto-von-Guericke Universität, said, "This is really a big step forward in imaging brain tumors and other issues in young patients. This methodology can serve as an advanced strategy to analyze the accuracy-dose tradeoff for other imaging systems, imaging technologies, or clinical tasks."

Related Links:
Duke University Medical Center
Cleveland Clinic

Post-Processing Imaging System
DynaCAD Prostate
Ultrasonic Pocket Doppler
SD1
Medical Radiographic X-Ray Machine
TR30N HF
New
Digital Color Doppler Ultrasound System
MS22Plus

Channels

Nuclear Medicine

view channel
Image: Perovskite crystal boules are grown in carefully controlled conditions from the melt (Photo courtesy of Mercouri Kanatzidis/Northwestern University)

New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis

Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.